Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

Development (Cambridge, England) | 2015

UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.

Pubmed ID: 25564650 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: T32CA078207-14
  • Agency: NIDDK NIH HHS, United States
    Id: R01DK099558
  • Agency: NCI NIH HHS, United States
    Id: T32 CA078207
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK080789
  • Agency: NIDDK NIH HHS, United States
    Id: 5R01DK080789
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK099558
  • Agency: NIDDK NIH HHS, United States
    Id: F30DK094503
  • Agency: NIDDK NIH HHS, United States
    Id: F30 DK094503

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Expression Omnibus (GEO) (tool)

RRID:SCR_005012

Functional genomics data repository supporting MIAME-compliant data submissions. Includes microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted. Collection of curated gene expression DataSets, as well as original Series and Platform records. The database can be searched using keywords, organism, DataSet type and authors. DataSet records contain additional resources including cluster tools and differential expression queries.

View all literature mentions