Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction.

The Journal of physiology | 2015

Neuromuscular junctions from β2-laminin-deficient mice exhibit lower levels of calcium sensitivity. Loss of β2-laminin leads to a failure in switching from N- to P/Q-type voltage-gated calcium channel (VGCC)-mediated transmitter release that normally occurs with neuromuscular junction maturation. The motor nerve terminals from β2-laminin-deficient mice fail to up-regulate the expression of P/Q-type VGCCs clusters and down-regulate N-type VGCCs clusters, as they mature. There is decreased co-localisation of presynaptic specialisations in β2-laminin-deficient neuromuscular junctions as a consequence of lesser P/Q-type VGCC expression. These findings support the idea that β2-laminin is critical in the organisation and maintenance of active zones at the neuromuscular junction via its interaction with P/Q-type VGCCs, which aid in stabilisation of the synapse. β2-laminin is a key mediator in the differentiation and formation of the skeletal neuromuscular junction. Loss of β2-laminin results in significant structural and functional aberrations such as decreased number of active zones and reduced spontaneous release of transmitter. In vitro β2-laminin has been shown to bind directly to the pore forming subunit of P/Q-type voltage-gated calcium channels (VGCCs). Neurotransmission is initially mediated by N-type VGCCs, but by postnatal day 18 switches to P/Q-type VGCC dominance. The present study investigated the changes in neurotransmission during the switch from N- to P/Q-type VGCC-mediated transmitter release at β2-laminin-deficient junctions. Analysis of the relationship between quantal content and extracellular calcium concentrations demonstrated a decrease in the calcium sensitivity, but no change in calcium dependence at β2-laminin-deficient junctions. Electrophysiological studies on VGCC sub-types involved in transmitter release indicate N-type VGCCs remain the primary mediator of transmitter release at matured β2-laminin-deficient junctions. Immunohistochemical analyses displayed irregularly shaped and immature β2-laminin-deficient neuromuscular junctions when compared to matured wild-type junctions. β2-laminin-deficient junctions also maintained the presence of N-type VGCC clustering within the presynaptic membrane, which supported the functional findings of the present study. We conclude that β2-laminin is a key regulator in development of the NMJ, with its loss resulting in reduced transmitter release due to decreased calcium sensitivity stemming from a failure to switch from N- to P/Q-type VGCC-mediated synaptic transmission.

Pubmed ID: 25556799 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


AxioVision Imaging System (tool)

RRID:SCR_002677

Digital image processing system where microscope settings and processing steps may be adjusted in single user interface. Can acquire images from variety of cameras. Includes software package for capturing, archiving and preparing images for publication. Allows users to visualize and present images in several dimensions. Functionality of imaging toolbox expands constantly with wide range of different modules that are tailored to specific applications or microscope accessories. This resource is duplicated by SCR_018376

View all literature mentions

Imaris (tool)

RRID:SCR_007370

Imaris provides range of capabilities for working with three dimensional images. Uses flexible editing and processing functions, such as interactive surface rendering and object slicing capabilities. And output to standard TIFF, Quicktime and AVI formats. Imaris accepts virtually all image formats that are used in confocal microscopy and many of those used in wide-field image acquisition.

View all literature mentions