Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus.

Endocrinology | Mar 21, 2015

Mounting evidence indicates a strong link between metabolic diseases and circadian dysfunctions. The metabolic hormone leptin, substantially increased in dietary obesity, displays chronobiotic properties. Here we investigated whether leptin is involved in the alteration of timing associated with obesity, via direct or indirect effects on the suprachiasmatic nucleus (SCN), the site of the master clock. Photic synchronization was studied in obese ob/ob mice (deficient in leptin), either injected or not with high doses of recombinant murine leptin (5 mg/kg). This was performed first at a behavioral level, by shifting the light-dark cycle and inducing phase shifts by 30-minute light pulses and then at molecular levels (c-FOS and P-ERK1/2). Moreover, to characterize the targets mediating the chronomodulatory effects of leptin, we studied the induction of phosphorylated signal transducer and activator of transcription 3 (P-STAT3) in the SCN and in different structures projecting to the SCN, including the medial hypothalamus. Ob/ob mice showed altered photic synchronization, including augmented light-induced phase delays. Acute leptin treatment normalized the photic responses of the SCN at both the behavioral and molecular levels (decrease of light-induced c-FOS). Leptin-induced P-STAT3 was modulated by light in the arcuate nucleus and both the ventromedial and dorsomedial hypothalamic nuclei, whereas its expression was independent of the presence of leptin in the SCN. These results suggest an indirect action of leptin on the SCN, possibly mediated by the medial hypothalamus. Taken together, these results highlight a central role of leptin in the relationship between metabolic disturbances and circadian disruptions.

Pubmed ID: 25521581 RIS Download

Mesh terms: Animals | Circadian Rhythm | Extracellular Signal-Regulated MAP Kinases | Gene Expression Regulation | Genes, fos | Leptin | Light | Male | Mice | Mice, Inbred C57BL | Mice, Obese | Phosphorylation | Recombinant Proteins | STAT3 Transcription Factor | Suprachiasmatic Nucleus

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.