Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The RNA binding protein MEX-3 retains asymmetric activity in the early Caenorhabditis elegans embryo in the absence of asymmetric protein localization.

Gene | 2015

The RNA binding protein MEX-3 is required to restrict translation of pal-1, the Caenorhabditis elegans caudal homolog, to the posterior of the early embryo. MEX-3 is present uniformly throughout the newly fertilized embryo, but becomes depleted in the posterior by the 4-cell stage. This MEX-3 patterning requires the CCCH zinc-finger protein MEX-5, the RNA Recognition Motif protein SPN-4, and the kinase PAR-4. Genetic and biochemical evidence suggests that MEX-5 binds to MEX-3 in the anterior of the embryo, protecting MEX-3 from degradation and allowing it to bind the pal-1 3'UTR and repress translation. MEX-3 that is not bound to MEX-5 becomes inactivated by par-4, then targeted for spn-4 dependent degradation. After the 4-cell stage, residual MEX-3 is degraded in somatic cells, and only persists in the germline precursors. To better understand regulation of mex-3, GFP was fused to MEX-3 or regions of MEX-3 and expressed in developing oocytes. GFP::MEX-3 expressed in this manner can replace endogenous MEX-3, but surprisingly is not asymmetrically localized at the 4-cell stage. These results indicate that GFP::MEX-3 retains asymmetric activity even in the absence of asymmetric protein localization. Neither the mex-3 3'UTR nor protein degradation at the 4-cell stage is strictly required. A region of MEX-3 containing a glutamine-rich region and potential ubiquitination and phosphorylation sites is sufficient for soma-germline asymmetry. Results from mex-5/6 and spn-4(RNAi) suggest two pathways for MEX-3 degradation, an early spn-4 dependent pathway and a later spn-4 independent pathway. These results indicate that mex-3 activity is regulated at multiple levels, leading to rapid and robust regulation in the quickly developing early embryo.

Pubmed ID: 25445286 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM061677
  • Agency: NIH HHS, United States
    Id: P40 OD010440

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


AxioVision Imaging System (tool)

RRID:SCR_002677

Digital image processing system where microscope settings and processing steps may be adjusted in single user interface. Can acquire images from variety of cameras. Includes software package for capturing, archiving and preparing images for publication. Allows users to visualize and present images in several dimensions. Functionality of imaging toolbox expands constantly with wide range of different modules that are tailored to specific applications or microscope accessories. This resource is duplicated by SCR_018376

View all literature mentions

Caenorhabditis Genetics Center (tool)

RRID:SCR_007341

Center that acquires, maintains, and distributes genetic stocks and information about stocks of the small free-living nematode Caenorhabditis elegans for use by investigators initiating or continuing research on this genetic model organism. A searchable strain database, general information about C. elegans, and links to key Web sites of use to scientists, including WormBase, WormAtlas, and WormBook are available.

View all literature mentions