Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects.

Molecular autism | 2014

Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants in these genes that regulate H3K9 methylation may be associated with ASD.

Pubmed ID: 25400900 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


dbSNP (tool)

RRID:SCR_002338

Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.

View all literature mentions

NICHD Brain and Tissue Bank for Developmental Disorders (tool)

RRID:SCR_003601

The objective of this human tissue repository is to systematically collect, store, and distribute brain and other tissues for research dedicated to the improved understanding, care, and treatment of individuals with developmental disorders. Brain sections are primarily frozen in isopentane / dry ice. Tissues are stored in 10% formalin and frozen at -85 degrees C. Of special interest are individuals with Down syndrome and other chromosomal defects, mitochondrial encephalopathies, phenylketonuria and other aminoacidopathies, maternal PKU, Rett syndrome, leukodystrophies, lysosomal disorders, dyslexia, autism, and other neurodevelopmental disorders. The brain and tissue banks have extensive experience in arranging for the rapid retrieval of tissue upon the death of individuals who die while at home, in hospitals or hospice care. As a special service, the brain and tissue banks are able to assist researchers who are working with patients who intend to donate tissues at the time of their death. Immediately after retrieval of the tissue, the brain and tissue banks will forward needed tissue to the referring investigators and ensure proper storage and cataloging of any additional tissues as part of the brain and tissue banks. The recipient of tissue and the brain and tissue banks are required to sign a Tissue Transfer Agreement before any tissues are transferred.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

NHLBI Exome Sequencing Project (ESP) (tool)

RRID:SCR_012761

The goal of the project is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. The groups participating and collaborating in the NHLBI GO ESP include: Seattle GO - University of Washington, Seattle, WA Broad GO - Broad Institute of MIT and Harvard, Cambridge, MA WHISP GO - Ohio State University Medical Center, Columbus, OH Lung GO - University of Washington, Seattle, WA WashU GO - Washington University, St. Louis, MO Heart GO - University of Virginia Health System, Charlottesville, VA ChargeS GO - University of Texas Health Sciences Center at Houston

View all literature mentions

SIFT (tool)

RRID:SCR_012813

Data analysis service to predict whether an amino acid substitution affects protein function based on sequence homology and the physical properties of amino acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and laboratory-induced missense mutations. (entry from Genetic Analysis Software) Web service is also available.

View all literature mentions

PolyPhen: Polymorphism Phenotyping (tool)

RRID:SCR_013200

Software tool which predicts possible impact of amino acid substitution on structure and function of human protein using straightforward physical and comparative considerations. PolyPhen-2 is new development of PolyPhen tool for annotating coding nonsynonymous SNPs.

View all literature mentions

Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (tool)

RRID:SCR_012820

Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.

View all literature mentions

RefSeq (tool)

RRID:SCR_003496

Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.

View all literature mentions

PolyPhen: Polymorphism Phenotyping (tool)

RRID:SCR_013189

Software tool which predicts possible impact of amino acid substitution on structure and function of human protein using straightforward physical and comparative considerations. PolyPhen-2 is new development of PolyPhen tool for annotating coding nonsynonymous SNPs.

View all literature mentions

Sequencher (tool)

RRID:SCR_001528

Software for Next-Generation DNA sequencing, Sanger DNA analysis, and RNA sequencing. It contains sequence analysis tools which include reference-guided alignments, de novo assembly, variant calling, and SNP analyses. It has integrated the Cufflinks suite for in-depth transcript analysis and differential gene expression of RNA-Seq data.

View all literature mentions

1000 Genomes Project and AWS (tool)

RRID:SCR_008801

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

View all literature mentions