Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Astrocyte-specific regulation of hMeCP2 expression in Drosophila.

Biology open | 2014

Alterations in the expression of Methyl-CpG-binding protein 2 (MeCP2) either by mutations or gene duplication leads to a wide spectrum of neurodevelopmental disorders including Rett Syndrome and MeCP2 duplication disorder. Common features of Rett Syndrome (RTT), MeCP2 duplication disorder, and neuropsychiatric disorders indicate that even moderate changes in MeCP2 protein levels result in functional and structural cell abnormalities. In this study, we investigated two areas of MeCP2 pathophysiology using Drosophila as a model system: the effects of MeCP2 glial gain-of-function activity on circuits controlling sleep behavior, and the cell-type specific regulation of MeCP2 expression. In this study, we first examined the effects of elevated MeCP2 levels on microcircuits by expressing human MeCP2 (hMeCP2) in astrocytes and distinct subsets of amine neurons including dopamine and octopamine (OA) neurons. Depending on the cell-type, hMeCP2 expression reduced sleep levels, altered daytime/nighttime sleep patterns, and generated sleep maintenance deficits. Second, we identified a 498 base pair region of the MeCP2e2 isoform that is targeted for regulation in distinct subsets of astrocytes. Levels of the full-length hMeCP2e2 and mutant RTT R106W protein decreased in astrocytes in a temporally and spatially regulated manner. In contrast, expression of the deletion Δ166 hMeCP2 protein was not altered in the entire astrocyte population. qPCR experiments revealed a reduction in full-length hMeCP2e2 transcript levels suggesting transgenic hMeCP2 expression is regulated at the transcriptional level. Given the phenotypic complexities that are caused by alterations in MeCP2 levels, our results provide insight into distinct cellular mechanisms that control MeCP2 expression and link microcircuit abnormalities with defined behavioral deficits.

Pubmed ID: 25305037 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Advanced 3D Visualization and Volume Modeling (tool)

RRID:SCR_014305

Software tool for visualizing, manipulating, and understanding data from tomography, microscopy, MRI and other imaging processes.Used to import and export options, to processes 3D image filtering and DTI based fiber tracking to visualization, volume and surface rendering, author tools for virtual reality navigation, video generation, and more.

View all literature mentions

Advanced 3D Visualization and Volume Modeling (tool)

RRID:SCR_007353

Software tool for visualizing, manipulating, and understanding data from tomography, microscopy, MRI and other imaging processes.Used to import and export options, to processes 3D image filtering and DTI based fiber tracking to visualization, volume and surface rendering, author tools for virtual reality navigation, video generation, and more.

View all literature mentions

w[*]; P{w[+mC]=Eaat1-GAL4.R}2 (tool)

RRID:BDSC_8849

Drosophila melanogaster with name w[*]; P{w[+mC]=Eaat1-GAL4.R}2 from BDSC.

View all literature mentions