Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction.

Journal of molecular and cellular cardiology | 2014

Adverse remodeling following myocardial infarction (MI) leading to heart failure is driven by an imbalanced resolution of inflammation. The macrophage cell is an important control of post-MI inflammation, as macrophage subtypes secrete mediators to either promote inflammation and extend injury (M1 phenotype) or suppress inflammation and promote scar formation (M2 phenotype). We have previously shown that the absence of caveolin-1 (Cav1), a membrane scaffolding protein, is associated with adverse cardiac remodeling in mice, but the mechanisms responsible remain to be elucidated. We explore here the role of Cav1 in the activation of macrophages using wild type C57BL6/J (WT) and Cav1(tm1Mls/J) (Cav1(-/-)) mice. By echocardiography, cardiac function was comparable between WT and Cav1(-/-) mice at 3days post-MI. In the absence of Cav1, there were a surprisingly higher percentage of M2 macrophages (arginase-1 positive) detected in the infarcted zone. Conversely, restoring Cav1 function after MI in WT mice by adding back the Cav1 scaffolding domain reduced the M2 activation profile. Further, adoptive transfer of Cav1 null macrophages into WT mice on d3 post-MI exacerbated adverse cardiac remodeling at d14 post-MI. In vitro studies revealed that Cav1 null macrophages had a more pronounced M2 profile activation in response to IL-4 stimulation. In conclusion, Cav1 deletion promotes an array of maladaptive repair processes after MI, including increased TGF-β signaling, increased M2 macrophage infiltration and dysregulation of the M1/M2 balance. Our data also suggest that cardiac remodeling can be improved by therapeutic intervention regulating Cav1 function during the inflammatory response phase.

Pubmed ID: 25128086 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: N01-HV-00244
  • Agency: NHLBI NIH HHS, United States
    Id: HL075360
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL075360
  • Agency: NHLBI NIH HHS, United States
    Id: R01HL66231
  • Agency: NHLBI NIH HHS, United States
    Id: HHSN268201000036C
  • Agency: BLRD VA, United States
    Id: I01 BX000505

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Olympus cellSens Software (tool)

RRID:SCR_014551

Software suite for image acquisition and analysis. The software can be paired with high-quality cameras to maximize output quality and export it for sharing and research applications.

View all literature mentions