Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Timely activation of budding yeast APCCdh1 involves degradation of its inhibitor, Acm1, by an unconventional proteolytic mechanism.

PloS one | 2014

Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF) complex or the anaphase-promoting complex (APC). Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20) in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk) phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell-cycle expression profiles can be established independent of proteolysis mediated by the APC and SCF enzymes.

Pubmed ID: 25072887 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Science Foundation (tool)

RRID:SCR_012938

An independent federal agency created by Congress to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense They are the funding source for approximately 20 percent of all federally supported basic research conducted by America''s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing. NSF leadership has two major components: a director who oversees NSF staff and management responsible for program creation and administration, merit review, planning, budget and day-to-day operations; and a 24-member National Science Board (NSB) of eminent individuals that meets six times a year to establish the overall policies of the foundation.The director and all Board members serve six year terms. Each of them, as well as the NSF deputy director, is appointed by the President of the United States and confirmed by the U.S. Senate. At present, NSF has a total workforce of about 2,100 at its Arlington, Va., headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General. NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. They are tasked with keeping the United States at the leading edge of discovery in areas from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports high-risk, high pay-off ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, they ensure that research is fully integrated with education so that today''s revolutionary work will also be training tomorrow''s top scientists and engineers NSF''s task of identifying and funding work at the frontiers of science and engineering is not a top-down process.

View all literature mentions

GenScript (tool)

RRID:SCR_002891

Commercial organization which provides life science services and products to researchers. They specialize in gene synthesis, peptide, protein, antibody and preclinical drug development service.

View all literature mentions

Image Lab Software (tool)

RRID:SCR_014210

Imaging software used to acquire and analyze images from specific Bio-Rad imaging systems. Users can analyze gel or blot features, capture optimized image data, and generate a report of the data. Image Lab software exclusively runs on the Gel Doc EZ imager, Gel Doc XR+ imaging system, ChemiDo MP, ChemiDoc XRS+ imaging systems, Criterion Stain Free imager, and the GS-900calibrated densitometer.

View all literature mentions