Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

Pain | 2014

Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing.

Pubmed ID: 25047781 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MR/L011719/1
  • Agency: Wellcome Trust, United Kingdom
    Id: 102645
  • Agency: Wellcome Trust, United Kingdom
  • Agency: Medical Research Council, United Kingdom
    Id: MR/L009013/1
  • Agency: Medical Research Council, United Kingdom
    Id: G0700399

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FSL (tool)

RRID:SCR_002823

Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.

View all literature mentions