Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer.

PloS one | 2014

This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO), a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04) in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF) induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2 × 10(6)) were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001) in the peritoneal cavity compared to vehicle (phosphate buffered saline) treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO's nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO) for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.

Pubmed ID: 24887420 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SignalChem (tool)

RRID:SCR_003684

An Antibody supplier

View all literature mentions

Dako (tool)

RRID:SCR_013530

An Antibody supplier; Dako was purchased by Agilent in 2012 and several years later the websites began to reflect the Dako products as part of the Agilent catalog.

View all literature mentions

SK-OV-3 (tool)

RRID:CVCL_0532

Cell line SK-OV-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

A2780 (tool)

RRID:CVCL_0134

Cell line A2780 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions