Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Combination of fluoxetine and extinction treatments forms a unique synaptic protein profile that correlates with long-term fear reduction in adult mice.

European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology | 2014

The antidepressant fluoxetine induces synaptic plasticity in the visual and fear networks and promotes the structural remodeling of neuronal circuits, which is critical for experience-dependent plasticity in response to an environmental stimulus. We recently demonstrated that chronic fluoxetine administration together with extinction training in adult mice reduced fear in a context-independent manner. Fear conditioning and extinction alter excitatory and inhibitory transmissions within the fear circuitry. In this study, we investigated whether fluoxetine, extinction or their combination produced distinct long-lasting changes in the synaptic protein profile in the amygdala, hippocampus and prefrontal cortex of conditioned mice. We determined that extinction induced synaptophysin expression and down-regulated the GluA1:GluA2 ratio throughout the fear network in water- and fluoxetine-treated mice, suggesting a common fluoxetine-independent mechanism for increased synaptic transmission and re-arrangement of AMPA-receptors by extinction training. In contrast to common changes, the presynaptic vesicular neurotransmitter transporters VGAT and Vglut1 were upregulated after extinction in water- and fluoxetine-treated mice, respectively. The cortical levels of the GABA transporter Gat1 were reduced in high-freezing water-drinking mice, suggesting a maladaptive increase of GABA spillover at cortical inhibitory synapses. Fear conditioning decreased, and extinction induced the expression of GABA-receptor alpha1 and alpha2 subunits in water- and fluoxetine-treated mice, respectively. Only a combination of fluoxetine with extinction enhanced GluN2A expression in the amygdala and hippocampus, emphasizing the role of this NMDA-receptor subunit in the successful erasure of fear memories. Our finding provides novel data that may become helpful in developing beneficial pharmacological fear-reducing treatment strategies.

Pubmed ID: 24837571 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Molecular Probes (tool)

RRID:SCR_013318

An Antibody supplier and subset of ThermoFisher Scientific which provides fluorescence reagents for various experiments and methods.

View all literature mentions

Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions