Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SAMBLASTER: fast duplicate marking and structural variant read extraction.

MOTIVATION: Illumina DNA sequencing is now the predominant source of raw genomic data, and data volumes are growing rapidly. Bioinformatic analysis pipelines are having trouble keeping pace. A common bottleneck in such pipelines is the requirement to read, write, sort and compress large BAM files multiple times. RESULTS: We present SAMBLASTER, a tool that reduces the number of times such costly operations are performed. SAMBLASTER is designed to mark duplicates in read-sorted SAM files as a piped post-pass on DNA aligner output before it is compressed to BAM. In addition, it can simultaneously output into separate files the discordant read-pairs and/or split-read mappings used for structural variant calling. As an alignment post-pass, its own runtime overhead is negligible, while dramatically reducing overall pipeline complexity and runtime. As a stand-alone duplicate marking tool, it performs significantly better than PICARD or SAMBAMBA in terms of both speed and memory usage, while achieving nearly identical results. AVAILABILITY AND IMPLEMENTATION: SAMBLASTER is open-source C+ + code and freely available for download from https://github.com/GregoryFaust/samblaster.

Pubmed ID: 24812344 RIS Download

Mesh terms: Genomic Structural Variation | Genomics | Sequence Alignment | Sequence Analysis, DNA | Software

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Hydra

Software that detects structural variation (SV) breakpoints by clustering discordant paired-end alignments whose signatures corroborate the same putative breakpoint. Hydra can detect breakpoints caused by all classes of structural variation. Moreover, it was designed to detect variation in both unique and duplicated genomic regions; therefore, it will examine paired-end reads having multiple discordant alignments. Hydra does not attempt to classify SV breakpoints based on the mapping distances and orientations of each breakpoint cluster, it merely detects and reports breakpoints. This is an intentional decision, as it was observed that in loci affected by complex rearrangements, the type of variant suggested by the breakpoint signature is not always correct. Hydra does report the orientations, distances, number of supporting read-pairs, etc., for each breakpoint. It is suggested that downstream methods be used to classify variants based on the genomic features that they overlap and the co-occurrence of other breakpoints. For example, they developed BEDTools for exactly this purpose and the breakpoints reported by Hydra are in the BEDPE format used by BEDTools. Future releases of Hydra will include scripts that assist in the classification process.

tool

View all literature mentions

Picard

Java toolset for working with next generation sequencing data in the BAM format.

tool

View all literature mentions

NovoAlign

Software tool designed for mapping short reads onto a reference genome generated from Illumina, Ion Torrent, and 454 NGS platforms. Its features include paired end alignment, methylation status analysis, automatic base quality calibration, and in built adapter trimming and base quality trimming.

tool

View all literature mentions