Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes.

PLoS genetics | 2014

Mollicutes is a class of parasitic bacteria that have evolved from a common Firmicutes ancestor mostly by massive genome reduction. With genomes under 1 Mbp in size, most Mollicutes species retain the capacity to replicate and grow autonomously. The major goal of this work was to identify the minimal set of proteins that can sustain ribosome biogenesis and translation of the genetic code in these bacteria. Using the experimentally validated genes from the model bacteria Escherichia coli and Bacillus subtilis as input, genes encoding proteins of the core translation machinery were predicted in 39 distinct Mollicutes species, 33 of which are culturable. The set of 260 input genes encodes proteins involved in ribosome biogenesis, tRNA maturation and aminoacylation, as well as proteins cofactors required for mRNA translation and RNA decay. A core set of 104 of these proteins is found in all species analyzed. Genes encoding proteins involved in post-translational modifications of ribosomal proteins and translation cofactors, post-transcriptional modifications of t+rRNA, in ribosome assembly and RNA degradation are the most frequently lost. As expected, genes coding for aminoacyl-tRNA synthetases, ribosomal proteins and initiation, elongation and termination factors are the most persistent (i.e. conserved in a majority of genomes). Enzymes introducing nucleotides modifications in the anticodon loop of tRNA, in helix 44 of 16S rRNA and in helices 69 and 80 of 23S rRNA, all essential for decoding and facilitating peptidyl transfer, are maintained in all species. Reconstruction of genome evolution in Mollicutes revealed that, beside many gene losses, occasional gains by horizontal gene transfer also occurred. This analysis not only showed that slightly different solutions for preserving a functional, albeit minimal, protein synthetizing machinery have emerged in these successive rounds of reductive evolution but also has broad implications in guiding the reconstruction of a minimal cell by synthetic biology approaches.

Pubmed ID: 24809820 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SEED (tool)

RRID:SCR_002129

The SEED is a framework to support comparative analysis and annotation of genomes. The cooperative effort focuses on the development of the comparative genomics environment and, more importantly, on the development of curated genomic data. Curation of genomic data (annotation) is done via the curation of subsystems by an expert annotator across many genomes, not on a gene by gene basis. From the curated subsystems we extract a set of freely available protein families (FIGfams). These FIGfams form the core component of our RAST automated annotation technology. Answering numerous requests for automatic Seed-Quality annotations for more or less complete bacterial and archaeal genomes, we have established the free RAST-Server (RAST=Rapid Annotation using Subsytems Technology). Using similar technology, we make the Metagenomics-RAST-Server freely available. We also provide a SEED-Viewer that allows read-only access to the latest curated data sets. We currently have 58 Archaea, 902 Bacteria, 562 Eukaryota, 1254 Plasmids and 1713 Viruses in our database. All tools and datasets that make up the SEED are in the public domain and can be downloaded at ftp://ftp.theseed.org

View all literature mentions

MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions

TBLASTN (tool)

RRID:SCR_011822

Tool to search translated nucleotide databases using a protein query.

View all literature mentions

PhyML (tool)

RRID:SCR_014629

Web phylogeny server based on the maximum-likelihood principle.

View all literature mentions

SeaView (tool)

RRID:SCR_015059

Graphical user interface for multiple sequence alignment and molecular phylogeny. SeaView also generates phylogenetic trees.

View all literature mentions