Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).

The Journal of comparative neurology | 2014

Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision.

Pubmed ID: 24737644 RIS Download

Additional research tools detected in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Antibody Registry (tool)

RRID:SCR_006397

Public registry of antibodies with unique identifiers for commercial and non-commercial antibody reagents to give researchers a way to universally identify antibodies used in publications. The registry contains antibody product information organized according to genes, species, reagent types (antibodies, recombinant proteins, ELISA, siRNA, cDNA clones). Data is provided in many formats so that authors of biological papers, text mining tools and funding agencies can quickly and accurately identify the antibody reagents they and their colleagues used. The Antibody Registry allows any user to submit a new antibody or set of antibodies to the registry via a web form, or via a spreadsheet upload.

View all literature mentions

Anti-Opsin, Red/Green (antibody)

RRID:AB_177456

This polyclonal targets Opsin Red/Green

View all literature mentions

opsin (antibody)

RRID:AB_2315013

This unknown targets

View all literature mentions

Adobe Illustrator (software resource)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

Adobe Illustrator (software resource)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

Anti-Opsin, Red/Green (antibody)

RRID:AB_177456

This polyclonal targets Opsin Red/Green

View all literature mentions

Adobe Illustrator (software resource)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions