Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Spatiotemporal expression analysis of the growth factor receptor SorCS3.

The Journal of comparative neurology | 2014

SorCS3 is a member of the Vps10p-D receptor family. These type I transmembrane proteins are regarded as sorting receptors, and some family members modulate signal transduction pathways by acting as co-receptors. SorCS3 binds the nerve growth factor (NGF) and platelet-derived growth factor (PDGF-BB), but the functional implications of these interactions are poorly understood. Here we demonstrate that SorCS3 is almost exclusively expressed in the nervous system and is localized to vesicular structures. By using in situ hybridization, we analyze SorCS3 dynamic expression during embryonic and postnatal development and compare the expression pattern with those of the homologous genes SorCS1 and SorCS2. SorCS3 transcripts are widely distributed in the nervous system but are absent from the embryonic cerebral cortex. SorCS3 expression marks thalamic nuclei at embryonic and early postnatal stages. However, during postnatal development and in the adult, a switch in the localization of SorCS3 transcripts was observed. At these stages forebrain structures, such as the hippocampus and the cerebral cortex, show most prominent expression. The developmental expression pattern of SorCS3 is in accordance with the proposed function as a receptor for growth factors or morphogenic signals. On the cellular level, we demonstrate that the SorCS3 cytoplasmic domain targets receptors to the Golgi apparatus, vesicular structures, and the cell surface. In neurons, receptors are localized to vesicles in the soma and dendrites. Moreover, we show that the SorCS3 cytoplasmic domain conveys internalization through canonical endocytic motifs in an adaptor protein 2 (AP-2)-dependent way. This is in agreement with a proposed function as a neuronal sorting receptor.

Pubmed ID: 24715575 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Antibody Registry (tool)

RRID:SCR_006397

Public registry of antibodies with unique identifiers for commercial and non-commercial antibody reagents to give researchers a way to universally identify antibodies used in publications. The registry contains antibody product information organized according to genes, species, reagent types (antibodies, recombinant proteins, ELISA, siRNA, cDNA clones). Data is provided in many formats so that authors of biological papers, text mining tools and funding agencies can quickly and accurately identify the antibody reagents they and their colleagues used. The Antibody Registry allows any user to submit a new antibody or set of antibodies to the registry via a web form, or via a spreadsheet upload.

View all literature mentions

Anti-MAP 2 (antibody)

RRID:AB_2138183

This polyclonal targets MAP 2

View all literature mentions

Anti-VGAT (antibody)

RRID:AB_887869

This polyclonal targets VGAT (cytoplasmic domain)

View all literature mentions

AP50 (antibody)

RRID:AB_398872

This monoclonal targets AP50

View all literature mentions

Anti-MAP 2 (antibody)

RRID:AB_2138183

This polyclonal targets MAP 2

View all literature mentions

Anti-MAP 2 (antibody)

RRID:AB_2138183

This polyclonal targets MAP 2

View all literature mentions

Anti-VGAT (antibody)

RRID:AB_887869

This polyclonal targets VGAT (cytoplasmic domain)

View all literature mentions

AP50 (antibody)

RRID:AB_398872

This monoclonal targets AP50

View all literature mentions