Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neither serotonin nor adenosine-dependent mechanisms preserve ventilatory capacity in ALS rats.

Respiratory physiology & neurobiology | 2014

In rats over-expressing SOD1G93A, ventilation is preserved despite significant loss of respiratory motor neurons. Thus, unknown forms of compensatory respiratory plasticity may offset respiratory motor neuron cell death. Although mechanisms of such compensation are unknown, other models of respiratory motor plasticity may provide a conceptual guide. Multiple cellular mechanisms give rise to phrenic motor facilitation; one mechanism requires spinal serotonin receptor and NADPH oxidase activity whereas another requires spinal adenosine receptor activation. Here, we studied whether these mechanisms contribute to compensatory respiratory plasticity in SOD1G93A rats. Using plethysmography, we assessed ventilation in end-stage SOD1G93A rats after: (1) serotonin depletion with parachlorophenylalanine (PCPA), (2) serotonin (methysergide) and A2A (MSX-3) receptor inhibition, (3) NADPH oxidase inhibition (apocynin), and (4) combined treatments. The ability to increase ventilation was not decreased by individual or combined treatments; thus, these mechanisms do not maintain breathing capacity at end-stage motor neuron disease. Possible mechanisms giving rise to enhanced breathing capacity with combined treatment in end-stage SOD1G93A rats are discussed.

Pubmed ID: 24681328 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR000427
  • Agency: NHLBI NIH HHS, United States
    Id: T32 HL007654
  • Agency: NCATS NIH HHS, United States
    Id: UL1TR000427
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS057778
  • Agency: NINDS NIH HHS, United States
    Id: P01 NS057778
  • Agency: NHLBI NIH HHS, United States
    Id: K99 HL119606

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SigmaStat (tool)

RRID:SCR_010285

Software tool for data graphing and analysis by Systat Software, Inc.

View all literature mentions