Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

Nature | 2014

Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.

Pubmed ID: 24670652 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIH HHS, United States
    Id: P51 OD011092
  • Agency: NICHD NIH HHS, United States
    Id: R01HD057121
  • Agency: NEI NIH HHS, United States
    Id: R01 EY021214
  • Agency: NEI NIH HHS, United States
    Id: R01EY021214
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD059946
  • Agency: NICHD NIH HHS, United States
    Id: R01HD063276
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD057121
  • Agency: NICHD NIH HHS, United States
    Id: R01HD059946
  • Agency: NIH HHS, United States
    Id: P51OD011092
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD063276

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Sequencher (tool)

RRID:SCR_001528

Software for Next-Generation DNA sequencing, Sanger DNA analysis, and RNA sequencing. It contains sequence analysis tools which include reference-guided alignments, de novo assembly, variant calling, and SNP analyses. It has integrated the Cufflinks suite for in-depth transcript analysis and differential gene expression of RNA-Seq data.

View all literature mentions

B6D2F1 (tool)

RRID:MGI:5649818

laboratory mouse with name B6D2F1 from MGI.

View all literature mentions