Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

PLoS biology | 2014

Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

Pubmed ID: 24643294 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: F31 NS065613-02
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS059042
  • Agency: NINDS NIH HHS, United States
    Id: F31 NS065613
  • Agency: NINDS NIH HHS, United States
    Id: NS054850
  • Agency: NINDS NIH HHS, United States
    Id: P30 NS054850

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenScript (tool)

RRID:SCR_002891

Commercial organization which provides life science services and products to researchers. They specialize in gene synthesis, peptide, protein, antibody and preclinical drug development service.

View all literature mentions

pClamp (tool)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions

Clocklab (tool)

RRID:SCR_014309

Point and click program used to quickly analyse circadian activity data using algorithms and embedded controls to make every graph interactive and useful for data analysis. The analysis program has been used for a variety of species including mice, hamsters, rats, sheep, Drosophila, and humans. This program has three separate applications: one for data collection, one for analysis, and a chamber control program.

View all literature mentions

PDF C7 antibody, deposited by Blau, Justin Biology, New York University (antibody)

RRID:AB_760350

This monoclonal targets Pigment-dispersing factor neuropeptide

View all literature mentions