Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Natural antisense transcripts and long non-coding RNA in Neurospora crassa.

PloS one | 2014

The prevalence of long non-coding RNAs (lncRNA) and natural antisense transcripts (NATs) has been reported in a variety of organisms. While a consensus has yet to be reached on their global importance, an increasing number of examples have been shown to be functional, regulating gene expression at the transcriptional and post-transcriptional level. Here, we use RNA sequencing data from the ABI SOLiD platform to identify lncRNA and NATs obtained from samples of the filamentous fungus Neurospora crassa grown under different light and temperature conditions. We identify 939 novel lncRNAs, of which 477 are antisense to annotated genes. Across the whole dataset, the extent of overlap between sense and antisense transcripts is large: 371 sense/antisense transcripts are complementary over 500 nts or more and 236 overlap by more than 1000 nts. Most prevalent are 3' end overlaps between convergently transcribed sense/antisense pairs, but examples of divergently transcribed pairs and nested transcripts are also present. We confirm the expression of a subset of sense/antisense transcript pairs by qPCR. We examine the size, types of overlap and expression levels under the different environmental stimuli of light and temperature, and identify 11 lncRNAs that are up-regulated in response to light. We also find differences in transcript length and the position of introns between protein-coding transcripts that have antisense expression and transcripts with no antisense expression. These results demonstrate the ability of N. crassa lncRNAs and NATs to be regulated by different environmental stimuli and provide the scope for further investigation into the function of NATs.

Pubmed ID: 24621812 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/F012055/1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Broad Institute (tool)

RRID:SCR_007073

Biomedical and genomic research center located in Cambridge, Massachusetts, United States. Nonprofit research organization under the name Broad Institute Inc., and is partners with Massachusetts Institute of Technology, Harvard University, and the five Harvard teaching hospitals. Dedicated to advance understanding of biology and treatment of human disease to improve human health.

View all literature mentions

Rfam (tool)

RRID:SCR_007891

The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). The families in Rfam break down into three broad functional classes: Non-coding RNA genes, structured cis-regulatory elements and self-splicing RNAs. Typically these functional RNAs often have a conserved secondary structure which may be better preserved than the RNA sequence. The CMs used to describe each family are a slightly more complicated relative of the profile hidden Markov models (HMMs) used by Pfam. CMs can simultaneously model RNA sequence and the structure in an elegant and accurate fashion. Rfam is also available via FTP. You can find data in Rfam in various ways... * Analyze your RNA sequence for Rfam matches * View Rfam family annotation and alignments * View Rfam clan details * Query Rfam by keywords * Fetch families or sequences by NCBI taxonomy * Enter any type of accession or ID to jump to the page for a Rfam family, sequence or genome

View all literature mentions

tRNAscan-SE (tool)

RRID:SCR_010835

Web server to search for tRNA genes in genomic sequence. If you would like to run tRNAscan-SE locally, you can get the UNIX source code (gzip''d tar file).

View all literature mentions

tRNAscan-SE (tool)

RRID:SCR_008637

Web server to search for tRNA genes in genomic sequence. If you would like to run tRNAscan-SE locally, you can get the UNIX source code (gzip''d tar file).

View all literature mentions