Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication.

Nature communications | 2014

During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry and dissect how phosphorylation has an impact on human Asf1 function. The divergent C-terminal tail of Asf1a is phosphorylated at several sites, and this is required for timely progression through S phase. Consistent with this, biochemical analysis of wild-type and phospho-mimetic Asf1a shows that phosphorylation enhances binding to histones and the downstream chaperones CAF-1 and HIRA. Moreover, we find that TLK phosphorylation of Asf1a is induced in cells experiencing deficiency of new histones and that TLK interaction with Asf1a involves its histone-binding pocket. We thus propose that TLK signalling promotes histone supply in S phase by targeting histone-free Asf1 and stimulating its ability to shuttle histones to sites of chromatin assembly.

Pubmed ID: 24598821 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: European Research Council, International
    Id: 281765

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Program to Reduce Incontinence by Diet and Exercise (tool)

RRID:SCR_009018

Randomized controlled trial being conducted at two clinical centers in the United States to learn more about the effects of weight loss on urinary incontinence. About 330 overweight women aged 30 or older will participate and will be followed for 18 months. Efficacy of weight reduction as a treatment for urinary incontinence will be examined at 6 months following the intensive weight control program, and the sustained impact of the intervention will be examined at 18 months. To increase the maintenance of weight reduction and facilitate evaluation of the enduring impact of weight loss on urinary incontinence, they propose to study a motivation-based weight maintenance program. At the end of the intensive weight control program, women randomized to the weight loss program will be randomized to either a 12-month skill-based maintenance intervention or to a motivation-based maintenance intervention. The maintenance interventions maximize the potential for sustained weight loss and will allow them to determine if long-term weight reduction will produce continued improvement in urinary incontinence.

View all literature mentions

MaxQuant (tool)

RRID:SCR_014485

A quantitative proteomics software package for analyzing large-scale mass-spectrometric data sets. It is a set of algorithms that include peak detection and scoring of peptides, mass calibration, database searches for protein identification, protein quantification, and provides summary statistics.

View all literature mentions

HeLa S3 (tool)

RRID:CVCL_0058

Cell line HeLa S3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

U2OS (tool)

RRID:CVCL_0042

Cell line U2OS is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions