Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neuronal-specific deficiency of the splicing factor Tra2b causes apoptosis in neurogenic areas of the developing mouse brain.

PloS one | 2014

Alternative splicing (AS) increases the informational content of the genome and is more prevalent in the brain than in any other tissue. The splicing factor Tra2b (Sfrs10) can modulate splicing inclusion of exons by specifically detecting GAA-rich binding motifs and its absence causes early embryonic lethality in mice. TRA2B has been shown to be involved in splicing processes of Nasp (nuclear autoantigenic sperm protein), MAPT (microtubule associated protein tau) and SMN (survival motor neuron), and is therefore implicated in spermatogenesis and neurological diseases like Alzheimer's disease, dementia, Parkinson's disease and spinal muscular atrophy. Here we generated a neuronal-specific Tra2b knock-out mouse that lacks Tra2b expression in neuronal and glial precursor cells by using the Nestin-Cre. Neuronal-specific Tra2b knock-out mice die immediately after birth and show severe abnormalities in cortical development, which are caused by massive apoptotic events in the ventricular layers of the cortex, demonstrating a pivotal role of Tra2b for the developing central nervous system. Using whole brain RNA on exon arrays we identified differentially expressed alternative exons of Tubulinδ1 and Shugoshin-like2 as in vivo targets of Tra2b. Most interestingly, we found increased expression of the cyclin dependent kinase inhibitor 1a (p21) which we could functionally link to neuronal precursor cells in the affected brain regions. We provide further evidence that the absence of Tra2b causes p21 upregulation and ultimately cell death in NSC34 neuronal-like cells. These findings demonstrate that Tra2b regulates splicing events essential for maintaining neuronal viability during development. Apoptotic events triggered via p21 might not be restricted to the developing brain but could possibly be generalized to the whole organism and explain early embryonic lethality in Tra2b-depleted mice.

Pubmed ID: 24586484 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Bioinformatics Institute (tool)

RRID:SCR_004727

Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.

View all literature mentions

German Research Foundation (tool)

RRID:SCR_012946

German research awards.Central self governing research funding organisation in Germany. Serves sciences and humanities and promotes research at universities and non-university research institutions. The focus is on funding projects developed by academic community.

View all literature mentions

German Research Foundation (tool)

RRID:SCR_012420

German research awards.Central self governing research funding organisation in Germany. Serves sciences and humanities and promotes research at universities and non-university research institutions. The focus is on funding projects developed by academic community.

View all literature mentions

NSC-34 (tool)

RRID:CVCL_D356

Cell line NSC-34 is a Hybrid cell line with a species of origin Mus musculus (Mouse)

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

C57BL/6N (tool)

RRID:MGI:2159965

laboratory mouse with name C57BL/6N from MGI.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions