Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

An unconventional secretory pathway mediates the cilia targeting of peripherin/rds.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2014

It is unclear how unconventional secretion interplays with conventional secretion for the normal maintenance and renewal of membrane structures. The photoreceptor sensory cilium is recognized for fast membrane renewal, for which rhodopsin and peripherin/rds (P/rds) play critical roles. Here, we provide evidence that P/rds is targeted to the cilia by an unconventional secretion pathway. When expressed in ciliated hTERT-RPE1 human cell line, P/rd is localized to cilia. Cilium trafficking of P/rds was sustained even when the Golgi functions, including trans-Golgi-mediated conventional secretion, were inhibited by the small molecules brefeldin A, 30N12, and monensin. The unconventional cilia targeting of P/rds is dependent on COPII-mediated exit from the ER, but appears to be independent of GRASP55-mediated secretion. The regions in the C-terminal tail of P/rds are essential for this unconventional trafficking. In the absence of the region required for cilia targeting, P/rds was prohibited from entering the secretory pathways and was retained in the Golgi apparatus. A region essential for this Golgi retention was also found in the C-terminal tail of P/rds and supported the cilia targeting of P/rds mediated by unconventional secretion. In ciliated cells, including bovine and Xenopus laevis rod photoreceptors, P/rds was robustly sensitive to endoglycosidase H, which is consistent with its bypassing the medial Golgi and traversing the unconventional secretory pathway. Because rhodopsin is known to traffic through conventional secretion, this study of P/rds suggests that both conventional secretion and unconventional secretion need to cooperate for the renewal of the photoreceptor sensory cilium.

Pubmed ID: 24431457 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

  • Agency: NEI NIH HHS, United States
    Id: P30 EY011373
  • Agency: NEI NIH HHS, United States
    Id: R01 EY020826
  • Agency: NIDDK NIH HHS, United States
    Id: T32 DK007319

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


rds2D4(prph/rds) antibody (antibody)

RRID:AB_2315773

This monoclonal targets c-terminus of x. laevis prph2/rds

View all literature mentions