Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Activity-dependent Wnt 7 dendritic targeting in hippocampal neurons: plasticity- and tagging-related retrograde signaling mechanism?

Hippocampus | Apr 17, 2014

Wnt proteins have emerged as transmembrane signaling molecules that regulate learning and memory as well as synaptic plasticity at central synapses (Inestrosa and Arenas (2010) Nat Rev Neurosci 11:77-86; Maguschak and Ressler (2011) J Neurosci 31:13057-13067; Tabatadze et al. (2012) Hippocampus 22: 1228-1241; Fortress et al. (2013) J Neurosci 33:12619-12626). For example, there is both a training-selective and Wnt isoform-specific increase in Wnt 7 levels in hippocampus seven days after spatial learning in rats (Tabatadze et al. (2012) Hippocampus 22: 1228-1241). Despite growing interest in Wnt signaling pathways in the adult brain, intracellular distribution and release of Wnt molecules from synaptic compartments as well as their influence on synaptic strength and connectivity remain less well understood. As a first step in such an analysis, we show here that Wnt 7 levels in primary hippocampal cells are elevated by potassium or glutamate activation in a time-dependent manner. Subsequent Wnt 7 elevation in dendrites suggests selective somato-dendritic trafficking followed by transport from dendrites to their spines. Wnt 7 elevation is also TTX-reversible, establishing that its elevation is indeed an activity-dependent process. A second stimulation given 6 h after the first significantly reduces Wnt 7 levels in dendrites 3 h later as compared to non-stimulated controls suggesting activity-dependent Wnt 7 release from dendrites and spines. In a related experiment designed to mimic the release of Wnt 7, exogenous recombinant Wnt 7 increased the number of active zones in presynaptic terminals as indexed by bassoon. This suggests the formation of new presynaptic release sites and/or presynaptic terminals. Wnt signaling inhibitor sFRP-1 completely blocked this Wnt 7-induced elevation of bassoon cluster number and cluster area. We suggest that Wnt 7 is a plasticity-related protein involved in the regulation of presynaptic plasticity via a retrograde signaling mechanism as previously proposed (Routtenberg (1999) Trends in Neuroscience 22:255-256). These findings provide support for this proposal, which offers a new perspective on the synaptic tagging mechanism (Redondo and Morris (2011) Nat Rev Neurosci 12:17-30).

Pubmed ID: 24375790 RIS Download

Mesh terms: Animals | Cells, Cultured | Dendrites | Dendritic Spines | Glutamic Acid | Hippocampus | Intercellular Signaling Peptides and Proteins | Membrane Proteins | Models, Neurological | Neuronal Plasticity | Neurons | Potassium Chloride | Presynaptic Terminals | Rats | Rats, Sprague-Dawley | Signal Transduction | Sodium Channel Blockers | Synaptic Transmission | Tetrodotoxin | Time Factors | Wnt Proteins

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.