Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases.

Neurobiology of disease | Mar 20, 2014

Microdeletion of the human CHRNA7 gene (α7 nicotinic acetylcholine receptor, nAChR) as well as dysfunction in N-methyl-d-aspartate receptors (NMDARs) have been associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia. However, the pathophysiological roles of synaptic vs. extrasynaptic NMDARs and their interactions with α7 nAChRs in cortical dysfunction remain largely uncharacterized. Using a combination of in vivo and in vitro models, we demonstrate that α7 nAChR gene deletion leads to specific loss of synaptic NMDARs and their coagonist, d-serine, as well as glutamatergic synaptic deficits in mouse cortex. α7 nAChR null mice had decreased cortical NMDAR expression and glutamatergic synapse formation during postnatal development. Similar reductions in NMDAR expression and glutamatergic synapse formation were revealed in cortical cultures lacking α7 nAChRs. Interestingly, synaptic, but not extrasynaptic, NMDAR currents were specifically diminished in cultured cortical pyramidal neurons as well as in acute prefrontal cortical slices of α7 nAChR null mice. Moreover, d-serine responsive synaptic NMDAR-mediated currents and levels of the d-serine synthetic enzyme serine racemase were both reduced in α7 nAChR null cortical pyramidal neurons. Our findings thus identify specific loss of synaptic NMDARs and their coagonist, d-serine, as well as glutamatergic synaptic deficits in α7 nAChR gene deletion models of cortical dysfunction, thereby implicating α7 nAChR-mediated control of synaptic NMDARs and serine racemase/d-serine pathways in cortical dysfunction underlying many neuropsychiatric and neurodevelopmental disorders, particularly those associated with deletion of human CHRNA7.

Pubmed ID: 24326163 RIS Download

Mesh terms: Age Factors | Animals | Animals, Newborn | Cells, Cultured | Cerebral Cortex | Embryo, Mammalian | Excitatory Postsynaptic Potentials | Female | Gene Expression Regulation, Developmental | Guanylate Kinases | In Vitro Techniques | Membrane Proteins | Mice | Mice, Inbred C57BL | Mice, Knockout | Neurons | Pregnancy | Receptors, N-Methyl-D-Aspartate | Synapses | Vesicular Glutamate Transport Protein 1 | alpha7 Nicotinic Acetylcholine Receptor

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, Id: R01NS45986
  • Agency: NINDS NIH HHS, Id: R21NS072842
  • Agency: NICHD NIH HHS, Id: P30 HD026979
  • Agency: NINDS NIH HHS, Id: R21 NS072842
  • Agency: NICHD NIH HHS, Id: P30HD026979
  • Agency: NINDS NIH HHS, Id: R01 NS045986

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.


View all literature mentions