Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of origin.

Genome research | 2014

Alternative splicing is the main mechanism of increasing the proteome diversity coded by a limited number of genes. It is well established that different tissues or organs express different splicing variants. However, organs are composed of common major cell types, including fibroblasts, epithelial, and endothelial cells. By analyzing large-scale data sets generated by The ENCODE Project Consortium and after extensive RT-PCR validation, we demonstrate that each of the three major cell types expresses a specific splicing program independently of its organ origin. Furthermore, by analyzing splicing factor expression across samples, publicly available splicing factor binding site data sets (CLIP-seq), and exon array data sets after splicing factor depletion, we identified several splicing factors, including ESRP1 and 2, MBNL1, NOVA1, PTBP1, and RBFOX2, that contribute to establishing these cell type-specific splicing programs. All of the analyzed data sets are freely available in a user-friendly web interface named FasterDB, which describes all known splicing variants of human and mouse genes and their splicing patterns across several dozens of normal and cancer cells as well as across tissues. Information regarding splicing factors that potentially contribute to individual exon regulation is also provided via a dedicated CLIP-seq and exon array data visualization interface. To the best of our knowledge, FasterDB is the first database integrating such a variety of large-scale data sets to enable functional genomics analyses at exon-level resolution.

Pubmed ID: 24307554 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PicTar (tool)

RRID:SCR_003343

An algorithm for the identification of microRNA targets. Details are provided (3' UTR alignments with predicted sites, links to various public databases etc) regarding: # microRNA target predictions in vertebrates (Krek et al, Nature Genetics 37:495-500 (2005)) # microRNA target predictions in seven Drosophila species (Grn et al, PLoS Comp. Biol. 1:e13 (2005)) # microRNA targets in three nematode species (Lall et al, Current Biology 16, 1-12 (2006)) # human microRNA targets that are not conserved but co-expressed (i.e. the microRNA and mRNA are expressed in the same tissue) (Chen and Rajewsky, Nat Genet 38, 1452-1456 (2006)) co-expressed targets

View all literature mentions

PITA (tool)

RRID:SCR_010853

Catalogs of predicted microRNA targets in worm (based on ce6 genome assembly), fly (dm3), mouse (mm9) and human (hg18). We follow standard seed parameter settings and consider seeds of length 6-8 bases, beginning at position 2 of the microRNA. No mismatches or loops are allowed, but a single G:U wobble is allowed in 7- or 8-mers. In genes missing a 3' UTR annotation, 500 bp (fly), 800 bp (human and mouse) or 300 bp (worm) downstream of the annotated end of the coding sequence were used as the predicted UTR. For each organism, a catalog with zero flank and with a flank of 3 and 15 bases upstream and downstream.

View all literature mentions

MDA-MB-231 (tool)

RRID:CVCL_0062

Cell line MDA-MB-231 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HUVEC-C (tool)

RRID:CVCL_2959

Cell line HUVEC-C is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

MCF-7 (tool)

RRID:CVCL_0031

Cell line MCF-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions