Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels.

Neuroscience | 2014

The spiral ganglion conveys afferent auditory information predominantly through a single class of type I neurons that receive signals from inner hair cell sensory receptors. These auditory primary afferents, like in other systems (Puopolo and Belluzzi, 1998; Gascon and Moqrich, 2010; Leao et al., 2012) possess a marked diversity in their electrophysiological features (Taberner and Liberman, 2005). Consistent with these observations, when the auditory primary afferents were assessed in neuronal explants separated from their peripheral and central targets it was found that individual neurons were markedly heterogeneous in their endogenous electrophysiological features. One aspect of this heterogeneity, obvious throughout the ganglion, was their wide range of excitability as assessed by voltage threshold measurements (Liu and Davis, 2007). Thus, while neurons in the base differed significantly from apical and middle neurons in their voltage thresholds, each region showed distinctly wide ranges of values. To determine whether the resting membrane potentials (RMPs) of these neurons correlate with the threshold distribution and to identify the ion channel regulatory elements underlying heterogeneous neuronal excitability in the ganglion, patch-clamp recordings were made from postnatal day (P5-8) murine spiral ganglion neurons in vitro. We found that RMP mirrored the tonotopic threshold distribution, and contributed an additional level of heterogeneity in each cochlear location. Pharmacological experiments further indicated that threshold and RMP was coupled through the Kv1 current, which had a dual impact on both electrophysiological parameters. Whereas, hyperpolarization-activated cationic channels decoupled these two processes by primarily affecting RMP without altering threshold level. Thus, beyond mechanical and synaptic specializations, ion channel regulation of intrinsic membrane properties imbues spiral ganglion neurons with different excitability levels, a feature that contributes to primary auditory afferent diversity.

Pubmed ID: 24200924 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC001856
  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC01856

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions

Kv1.1 potassium channel (external) (antibody)

RRID:AB_10673166

This monoclonal targets Kv1.1 potassium channel (external)

View all literature mentions

Anti-Kv1.1 K+ Channel (External) Antibody (antibody)

RRID:AB_2128566

This monoclonal targets Kv1.1 K+ channel (external)

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_2296313

This monoclonal targets Kv1.2 K+ channel

View all literature mentions