Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PML isoforms in response to arsenic: high-resolution analysis of PML body structure and degradation.

Journal of cell science | 2014

Arsenic is a clinically effective treatment for acute promyelocytic leukaemia (APL) in which the promyelocytic leukaemia (PML) protein is fused to retinoic receptor alpha (RARα). PML-RARα is degraded by the proteasome by a SUMO-dependent, ubiquitin-mediated pathway in response to arsenic treatment, curing the disease. Six major PML isoforms are expressed as a result of alternative splicing, each of which encodes a unique C-terminal region. Using a system in which only a single EYFP-linked PML isoform is expressed, we demonstrate that PMLI, PMLII and PMLVI accumulate in the cytoplasm following arsenic treatment, whereas PMLIII, PMLIV and PMLV do not. 3D structured illumination was used to obtain super-resolution images of PML bodies, revealing spherical shells of PML along with associated SUMO. Arsenic treatment results in dramatic isoform-specific changes to PML body ultrastructure. After extended arsenic treatment most PML isoforms are degraded, leaving SUMO at the core of the nuclear bodies. A high-content imaging assay identifies PMLV as the isoform most readily degraded following arsenic treatment, and PMLIV as relatively resistant to degradation. Immunoprecipitation analysis demonstrates that all PML isoforms are modified by SUMO and ubiquitin after arsenic treatment, and by using siRNA, we demonstrate that arsenic-induced degradation of all PML isoforms is dependent on the ubiquitin E3 ligase RNF4. Intriguingly, depletion of RNF4 results in marked accumulation of PMLV, suggesting that this isoform is an optimal substrate for RNF4. Thus the variable C-terminal domain influences the rate and location of degradation of PML isoforms following arsenic treatment.

Pubmed ID: 24190887 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 098391/Z/12/Z
  • Agency: Wellcome Trust, United Kingdom
    Id: 098391
  • Agency: Medical Research Council, United Kingdom
    Id: MC_UU_12014/4
  • Agency: Cancer Research UK, United Kingdom
    Id: C434/A13067
  • Agency: Medical Research Council, United Kingdom
    Id: MR/K015869/1
  • Agency: Wellcome Trust, United Kingdom
    Id: 097945
  • Agency: Cancer Research UK, United Kingdom
    Id: 13067
  • Agency: Medical Research Council, United Kingdom
    Id: MC_U130169966
  • Agency: Wellcome Trust, United Kingdom

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


HepaRG (tool)

RRID:CVCL_9720

Cell line HepaRG is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions