Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development.

Developmental biology | 2014

In the developing brain, the production of neurons from multipotent precursors must be carefully regulated in order to generate the appropriate numbers of various differentiated neuronal types. Inductive signals from extrinsic elements such as growth factors need to be integrated with timely expression of intrinsic elements such as transcription factors that define the competence of the cell. The transcriptional Mediator complex offers a mechanism to coordinate the timing and levels of intrinsic and extrinsic influences by acting as a rapid molecular switch for transcription of poised RNA pol II. The epithalamus is a highly conserved region of the vertebrate brain that differentiates early and rapidly in the zebrafish. It includes the pineal and parapineal organs and the habenular nuclei. Mutation of the Mediator complex subunit Med12 impairs the specification of habenular and parapineal neurons and causes a loss of differentiation in pineal neurons and photoreceptors. Although FGF ligands and transcription factors for parapineal and photoreceptor development are still expressed in the pineal complex of med12 mutants, FGF signaling is impaired and transcription factor expression is reduced and/or delayed. We find that the timely expression of one of these transcription factors, tbx2b, is controlled by Med12 and is vital for parapineal specification. We propose that the Mediator complex is responsible for subtle but significant changes in transcriptional timing and amplitude that are essential for coordinating the development of neurons in the epithalamus.

Pubmed ID: 24184636 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: CA68485
  • Agency: NIDDK NIH HHS, United States
    Id: DK20593
  • Agency: NIDDK NIH HHS, United States
    Id: DK58404
  • Agency: NIDDK NIH HHS, United States
    Id: DK59637
  • Agency: NEI NIH HHS, United States
    Id: EY08126
  • Agency: NICHD NIH HHS, United States
    Id: F32HD069148
  • Agency: NICHD NIH HHS, United States
    Id: HD15052
  • Agency: NICHD NIH HHS, United States
    Id: R01HD042215

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Mouse Metabolic Phenotyping Centers (tool)

RRID:SCR_008997

The mission is to advance medical and biological research by providing the scientific community with standardized, high quality metabolic and physiologic phenotyping services for mouse models of diabetes, diabetic complications, obesity and related disorders.

View all literature mentions