Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

VAN: an R package for identifying biologically perturbed networks via differential variability analysis.

BMC research notes | 2013

Large-scale molecular interaction networks are dynamic in nature and are of special interest in the analysis of complex diseases, which are characterized by network-level perturbations rather than changes in individual genes/proteins. The methods developed for the identification of differentially expressed genes or gene sets are not suitable for network-level analyses. Consequently, bioinformatics approaches that enable a joint analysis of high-throughput transcriptomics datasets and large-scale molecular interaction networks for identifying perturbed networks are gaining popularity. Typically, these approaches require the sequential application of multiple bioinformatics techniques - ID mapping, network analysis, and network visualization. Here, we present the Variability Analysis in Networks (VAN) software package: a collection of R functions to streamline this bioinformatics analysis.

Pubmed ID: 24156242 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


TargetScan (tool)

RRID:SCR_010845

Web tool to predict biological targets of miRNAs by searching for presence of conserved 8mer, 7mer and 6mer sites that match seed region of each miRNA. Nonconserved sites are also predicted and sites with mismatches in seed region that are compensated by conserved 3' pairing. Used to search for predicted microRNA targets in mammals.

View all literature mentions