Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Heparin-dependent regulation of fibronectin matrix conformation.

Matrix biology : journal of the International Society for Matrix Biology | 2014

Extracellular matrix (ECM) conformation is regulated by a variety of stimuli in vivo, including mechanical forces and allosteric binding partners, and these conformational changes contribute to the regulation of cell behavior. Heparin and heparan sulfate, for example, have been shown to regulate the sequestration and presentation of numerous growth factors, including vascular endothelial growth factor, on the heparin 2 binding domain in fibronectin (Fn). However, mechanical force also alters Fn conformation, indicating that the growth factor binding region may be co-regulated by both heparin and mechanical force. Herein, we describe a simple antibody-based method for evaluating the conformation of the heparin 2 binding domain in Fn, and use it to determine the relative contributions of heparin and mechanical strain to the regulation of Fn conformation. We achieved specificity in quantifying conformational changes in this region of Fn by measuring the ratio of two fluorescent monoclonal antibodies, one that is insensitive to Fn conformational changes and a second whose binding is reduced or enhanced by non-equilibrium conformational changes. Importantly, this technique is shown to work on Fn adsorbed on surfaces, single Fn fibers, and Fn matrix fibers in cell culture. Using our dual antibody approach, we show that heparin and mechanical strain co-regulate Fn conformation in matrix fibrils, which is the first demonstration of heparin-dependent regulation of Fn in its physiologically-relevant fibrillar state. Furthermore, the dual antibody approach utilizes commercially available antibodies and simple immunohistochemistry, thus making it accessible to a wide range of scientists interested in Fn mechanobiology.

Pubmed ID: 24148804 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL088572
  • Agency: NHLBI NIH HHS, United States
    Id: HL088672

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions