Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Oxytocin receptor in the hypothalamus is sufficient to rescue normal thermoregulatory function in male oxytocin receptor knockout mice.

Endocrinology | 2013

Oxytocin (OXT) and OXT receptor (OXTR) have been implicated in the regulation of energy homeostasis, but the detailed mechanism is still unclear. We recently showed late-onset obesity and impaired cold-induced thermogenesis in male OXTR knockout (Oxtr(-/-)) mice. Here we demonstrate that the OXTR in the hypothalamus has important functions in thermoregulation. Male Oxtr(-/-) mice failed to maintain their body temperatures during exposure to a cold environment. Oxtr(-/-) mice also showed decreased neuronal activation in the thermoregulatory hypothalamic region during cold exposure. Normal cold-induced thermogenesis was recovered in Oxtr(-/-) mice by restoring OXTR to the hypothalamus with an adeno-associated virus-Oxtr vector. In addition, brown adipose tissue (BAT) in Oxtr(-/-) mice contained larger lipid droplets in both 10- and 20-week-old compared with BAT from age-matched Oxtr(+/+) control mice. In BAT, the expression level of β3-adrenergic receptor at normal temperature was lower in Oxtr(-/-) mice than that in control mice. In contrast, α2A-adrenergic receptor expression level was higher in BAT from Oxtr(-/-) mice in both normal and cold temperatures. Because β3- and α2A-adrenergic receptors are known to have opposite effects on the thermoregulation, the imbalance of adrenergic receptors is suspected to affect this dysfunction in the thermoregulation. Our study is the first to demonstrate that the central OXT/OXTR system plays important roles in the regulation of body temperature homeostasis.

Pubmed ID: 24002032 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.