Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex.

Nature | 2013

Early sensory experience instructs the maturation of neural circuitry in the cortex. This has been studied extensively in the primary visual cortex, in which loss of vision to one eye permanently degrades cortical responsiveness to that eye, a phenomenon known as ocular dominance plasticity (ODP). Cortical inhibition mediates this process, but the precise role of specific classes of inhibitory neurons in ODP is controversial. Here we report that evoked firing rates of binocular excitatory neurons in the primary visual cortex immediately drop by half when vision is restricted to one eye, but gradually return to normal over the following twenty-four hours, despite the fact that vision remains restricted to one eye. This restoration of binocular-like excitatory firing rates after monocular deprivation results from a rapid, although transient, reduction in the firing rates of fast-spiking, parvalbumin-positive (PV) interneurons, which in turn can be attributed to a decrease in local excitatory circuit input onto PV interneurons. This reduction in PV-cell-evoked responses after monocular lid suture is restricted to the critical period for ODP and appears to be necessary for subsequent shifts in excitatory ODP. Pharmacologically enhancing inhibition at the time of sight deprivation blocks ODP and, conversely, pharmacogenetic reduction of PV cell firing rates can extend the critical period for ODP. These findings define the microcircuit changes initiating competitive plasticity during critical periods of cortical development. Moreover, they show that the restoration of evoked firing rates of layer 2/3 pyramidal neurons by PV-specific disinhibition is a key step in the progression of ODP.

Pubmed ID: 23975100 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDA NIH HHS, United States
    Id: R00 DA023700
  • Agency: NEI NIH HHS, United States
    Id: R01 EY016052
  • Agency: NINDS NIH HHS, United States
    Id: NS078434
  • Agency: NEI NIH HHS, United States
    Id: EY016052
  • Agency: NEI NIH HHS, United States
    Id: R01 EY023871
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS078434

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

ScanImage (tool)

RRID:SCR_014307

Open source software application for laser scanning microscopy, electrophysiology, laser scanning photostimulation, and other physiological methods focused on neurobiology. Used to control laser scanning microscopes without need for custom data acquisition hardware. Standard data acquisition boards are used to acquire data and control laser scanning. The tasks of signal integration and image processing are placed on the computer CPU. Multiple versions of ScanImage are available, each with their own features.

View all literature mentions