Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Autobiographical memory in semantic dementia: new insights from two patients using fMRI.

Neuropsychologia | 2013

Episodic autobiographical memory (EAM) consists of personal events embedded within a specific spatiotemporal context. Patients with semantic dementia (SD) generally show preserved recent EAMs, but a controversy remains concerning their ability to retrieve remote ones. Only one fMRI study examined remote autobiographical memory in SD through a longitudinal case study (Maguire, Kumaran, Hassabis, & Kopelman, 2010). Here, we propose a cross-sectional study to test the hippocampo-neocortical up-regulation hypothesis, through a multimodal approach (gray matter volume, activation, connectivity analyses), directly comparing recent and remote autobiographical memory retrieval and collecting data to asses phenomelogical re-experiencing. EAM retrieval recruits a distributed network of brain regions, notably the hippocampus which is shown to be atrophied in SD, although some studies report no hippocampal atrophy in SD. Using fMRI, we examined recent and remote EAM retrieval in two SD patients with different profiles of hippocampal atrophy, compared to 12 healthy elders (HE). JPL presented severe bilateral hippocampal atrophy, while EP showed sparing of both hippocampi. Behaviourally, JPL was impaired at retrieving EAMs from both life periods and showed poorer use of visual mental imagery than HE, while EP retrieved memories which were as episodic as those of HE for both periods and relied on greater use of visual mental imagery than HE. Neuroimaging results showed that, for JPL, hyperactivations of the residual hippocampal tissue and of frontal, lateral temporal, occipital and parietal cortices did not efficiently compensate his autobiographical memory deficit. EP however presented hyperactivations in similar neocortical regions which appeared to be more efficient in compensating for atrophy elsewhere, since EP's EAM retrieval was preserved. Functional connectivity analyses focusing on the hippocampus showed how the residual hippocampal activity was connected to other brain areas. For JPL, recent autobiographical retrieval was associated with connectivity between the posterior hippocampus and middle occipital gyrus, while for EP, connectivity was detected between the anterior hippocampus and numerous regions (medial temporal, occipital, temporal, frontal, parietal) for both recent and remote periods. These findings suggest that intensification of hippocampal atrophy in SD strongly affects both recent and remote autobiographical recollection. Up-regulation of neocortical regions and functional hippocampal-neocortical connectivity within the autobiographical network may be insufficient to compensate the lifelong episodic memory deficit for patients with extensive hippocampal atrophy.

Pubmed ID: 23954715 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BrainVISA / Anatomist (tool)

RRID:SCR_007354

BrainVISA is a modular an customizable software platform built to host heterogeneous tools dedicated to neuroimaging research. Many toolboxes have already been developed for BrainVISA (T1 MRI, sulcal identification and morphometry, cortical surface analysis, diffusion imaging and tractography, fMRI, nuclear imaging, EEG and MEG, TMS, histology and autoradiography, etc.). Anatomist is a software for interactive visualization of multimodal data and for manipulation of structured 3D objects. It allows to build scenes that merge or combine images, meshes, regions of interest, fibers, textures, color palettes, referential changes, etc. A user can interact in 3D and in real time with the objects of an Anatomist scene: change point of view, select objects, add/suppress objects, change colors, draw regions of interests, do manual registration, etc. BrainVISA main features are: * Harmonization of communications between different software. For instance, BrainVISA toolboxes are using home-made software but also third-party software such as FreeSurfer, FSL, SPM, nipy, R-project, Matlab, etc. * Ontology-based data organization allowing database sharing and automation of mass of data analysis. * Fusion and interactive visualization of multimodal data (using Anatomist software). * Automatic generation of graphical user interfaces. * Workflow monitoring and data quality checking. * Full customization possible. * Runs on Linux, Mac and Windows. * Programming Language: C++, Python * Supported Data Format: ANALYZE, DICOM, GIfTI, MINC, NIfTI-1, Other Format

View all literature mentions