Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Effects of adult neural precursor-derived myelination on axonal function in the perinatal congenitally dysmyelinated brain: optimizing time of intervention, developing accurate prediction models, and enhancing performance.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2013

Stem cell repair shows substantial translational potential for neurological injury, but the mechanisms of action remain unclear. This study aimed to investigate whether transplanted stem cells could induce comprehensive functional remyelination. Subventricular zone (SVZ)-derived adult neural precursor cells (aNPCs) were injected bilaterally into major cerebral white matter tracts of myelin-deficient shiverer mice on postnatal day (P) 0, P7, and P21. Tripotential NPCs, when transplanted in vivo, integrated anatomically and functionally into local white matter and preferentially became Olig2+, Myelin Associated Glycoprotein-positive, Myelin Basic Protein-positive oligodendrocytes, rather than Glial Fibrillary Acidic Protein-positive astrocytes or Neurofiliment 200-positive neurons. Processes interacted with axons and transmission electron microscopy showed multilamellar axonal ensheathment. Nodal architecture was restored and by quantifying these anatomical parameters a computer model was generated that accurately predicted action potential velocity, determined by ex vivo slice recordings. Although there was no obvious phenotypic improvement in transplanted shi/shis, myelinated axons exhibited faster conduction, lower activation threshold, less refractoriness, and improved response to high-frequency stimulation than dysmyelinated counterparts. Furthermore, they showed improved resilience to ischemic insult, a promising finding in the context of perinatal brain injury. This study describes, for the first time mechanistically, the functional characteristics and anatomical integration of nonimmortalized donor SVZ-derived murine aNPCs in the dysmyelinated brain at key developmental time points.

Pubmed ID: 23864679 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

  • Agency: Canadian Institutes of Health Research, Canada

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Nav1.6 Na+ Channel Antibody (antibody)

RRID:AB_10673284

This monoclonal targets Nav1.6 sodium channel

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_10674277

This monoclonal targets Kv1.2 potassium channel

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_2296313

This monoclonal targets Kv1.2 K+ channel

View all literature mentions