Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function.

Nature | 2013

The mechanistic target of rapamycin (mTOR) pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct T-cell fate decisions. The activation of mTOR, which is the catalytic subunit of the mTORC1 and mTORC2 complexes, delivers an obligatory signal for the proper activation and differentiation of effector CD4(+) T cells, whereas in the regulatory T-cell (T(reg)) compartment, the Akt-mTOR axis is widely acknowledged as a crucial negative regulator of T(reg)-cell de novo differentiation and population expansion. However, whether mTOR signalling affects the homeostasis and function of T(reg) cells remains largely unexplored. Here we show that mTORC1 signalling is a pivotal positive determinant of T(reg)-cell function in mice. T(reg) cells have elevated steady-state mTORC1 activity compared to naive T cells. Signals through the T-cell antigen receptor (TCR) and interleukin-2 (IL-2) provide major inputs for mTORC1 activation, which in turn programs the suppressive function of T(reg) cells. Disruption of mTORC1 through Treg-specific deletion of the essential component raptor leads to a profound loss of T(reg)-cell suppressive activity in vivo and the development of a fatal early onset inflammatory disorder. Mechanistically, raptor/mTORC1 signalling in T(reg) cells promotes cholesterol and lipid metabolism, with the mevalonate pathway particularly important for coordinating T(reg)-cell proliferation and upregulation of the suppressive molecules CTLA4 and ICOS to establish Treg-cell functional competency. By contrast, mTORC1 does not directly affect the expression of Foxp3 or anti- and pro-inflammatory cytokines in T(reg) cells, suggesting a non-conventional mechanism for T(reg)-cell functional regulation. Finally, we provide evidence that mTORC1 maintains T(reg)-cell function partly through inhibiting the mTORC2 pathway. Our results demonstrate that mTORC1 acts as a fundamental 'rheostat' in T(reg) cells to link immunological signals from TCR and IL-2 to lipogenic pathways and functional fitness, and highlight a central role of metabolic programming of T(reg)-cell suppressive activity in immune homeostasis and tolerance.

Pubmed ID: 23812589 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS064599
  • Agency: NIAID NIH HHS, United States
    Id: R21 AI094089
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI101407
  • Agency: NIAID NIH HHS, United States
    Id: R21AI094089
  • Agency: NIAMS NIH HHS, United States
    Id: K01 AR053573

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions