Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mutations in PIK3R1 cause SHORT syndrome.

SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs*18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657*]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.

Pubmed ID: 23810382 RIS Download

Mesh terms: Adolescent | Child | Child, Preschool | Class Ia Phosphatidylinositol 3-Kinase | DNA Mutational Analysis | Exome | Exons | Female | Frameshift Mutation | Growth Disorders | Heterozygote | Heterozygote Detection | Humans | Hypercalcemia | Infant, Newborn | Male | Metabolic Diseases | Nephrocalcinosis | Pedigree | Phenotype | Phosphorylation | Signal Transduction

Research resources used in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: Canadian Institutes of Health Research, Id:
  • Agency: Cancer Research UK, Id:
  • Agency: Medical Research Council, Id:

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FASTX-Toolkit

Source codes of command line software for Short-Reads FASTA/FASTQ files preprocessing.

tool

View all literature mentions

OMIM

Collection of human genes and genetic phenotypes, focusing on the relationship between phenotype and genotype. The full-text, referenced overviews in OMIM contain information on all known mendelian disorders and a variety of related genes. It is updated daily, and the entries contain copious links to other genetics resources.

tool

View all literature mentions

MutationTaster

Evaluates disease-causing potential of sequence alterations.

tool

View all literature mentions

SAM format

A generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms.

tool

View all literature mentions

NHLBI Exome Sequencing Project (ESP)

The goal of the project is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. The groups participating and collaborating in the NHLBI GO ESP include: Seattle GO - University of Washington, Seattle, WA Broad GO - Broad Institute of MIT and Harvard, Cambridge, MA WHISP GO - Ohio State University Medical Center, Columbus, OH Lung GO - University of Washington, Seattle, WA WashU GO - Washington University, St. Louis, MO Heart GO - University of Virginia Health System, Charlottesville, VA ChargeS GO - University of Texas Health Sciences Center at Houston

tool

View all literature mentions