Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy.

American journal of human genetics | 2013

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.

Pubmed ID: 23810378 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: RC2 HL102926
  • Agency: NHLBI NIH HHS, United States
    Id: HL-102924
  • Agency: NHLBI NIH HHS, United States
    Id: RC2 HL102924
  • Agency: NHLBI NIH HHS, United States
    Id: HL-102926
  • Agency: NHLBI NIH HHS, United States
    Id: HL-102925
  • Agency: NHLBI NIH HHS, United States
    Id: RC2 HL103010
  • Agency: NHLBI NIH HHS, United States
    Id: HL-102923
  • Agency: NHLBI NIH HHS, United States
    Id: RC2 HL102923
  • Agency: NHLBI NIH HHS, United States
    Id: UC2 HL102926
  • Agency: NHLBI NIH HHS, United States
    Id: UC2 HL103010
  • Agency: NHLBI NIH HHS, United States
    Id: HL-103010
  • Agency: NHLBI NIH HHS, United States
    Id: UC2 HL102923
  • Agency: NHLBI NIH HHS, United States
    Id: UC2 HL102924
  • Agency: NHLBI NIH HHS, United States
    Id: RC2 HL102925
  • Agency: NHLBI NIH HHS, United States
    Id: UC2 HL102925

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


OMIM (tool)

RRID:SCR_006437

Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

NHLBI Exome Sequencing Project (ESP) (tool)

RRID:SCR_012761

The goal of the project is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. The groups participating and collaborating in the NHLBI GO ESP include: Seattle GO - University of Washington, Seattle, WA Broad GO - Broad Institute of MIT and Harvard, Cambridge, MA WHISP GO - Ohio State University Medical Center, Columbus, OH Lung GO - University of Washington, Seattle, WA WashU GO - Washington University, St. Louis, MO Heart GO - University of Virginia Health System, Charlottesville, VA ChargeS GO - University of Texas Health Sciences Center at Houston

View all literature mentions