Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

FTO deficiency induces UCP-1 expression and mitochondrial uncoupling in adipocytes.

Endocrinology | 2013

Variants in the fat mass- and obesity-associated (FTO) gene are associated with obesity and body fat mass in genome-wide association studies. However, the mechanism by which FTO predisposes individuals to obesity is not clear so far. First mechanistic evidence was shown in Fto-negative mice. These mice are resistant to obesity due to enhanced energy expenditure, whereas the mass of brown adipose tissue remains unchanged. We hypothesize that FTO is involved in the induction of white adipose tissue browning, which leads to mitochondrial uncoupling and increases energy expenditure. Uncoupling protein 1 (Ucp-1) was significantly higher expressed in both gonadal and inguinal adipose depots of Fto(-/-) compared with Fto(+/+) littermates accompanied by the appearance of multivacuolar, Ucp-1-positive adipocytes in these tissues. By using lentiviral short hairpin RNA constructs, we established FTO-deficient human preadipocytes and adipocytes and analyzed key metabolic processes. FTO-deficient adipocytes showed an adipogenic differentiation rate comparable with control cells but exhibited a reduced de novo lipogenesis despite unchanged glucose uptake. In agreement with the mouse data, FTO-deficient adipocytes exhibited 4-fold higher expression of UCP-1 in mitochondria compared with control cells. The up-regulation of UCP-1 in FTO-deficient adipocytes resulted in enhanced mitochondrial uncoupling. We conclude that FTO deficiency leads to the induction of a brown adipocyte phenotype, thereby enhancing energy expenditure. Further understanding of the signaling pathway connecting FTO with UCP-1 expression might lead to new options for obesity and overweight treatment.

Pubmed ID: 23751871 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-UCP1 antibody (antibody)

RRID:AB_2241462

This polyclonal targets UCP1

View all literature mentions

Cytochrome c (antibody)

RRID:AB_396417

This monoclonal targets Cytochrome c

View all literature mentions

Anti-β-Actin Antibody (antibody)

RRID:AB_476744

This monoclonal targets slightly modified β-cytoplasmic actin N-terminal peptide, Ac-Asp-Asp-Asp-Ile-Ala-Ala-Leu-Val-Ile-Asp-Asn-Gly-Ser-Gly-Lys, conjugated to KLH

View all literature mentions