Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana).

The Journal of comparative neurology | 2013

Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects.

Pubmed ID: 23749599 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.