Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Haplotype structure enables prioritization of common markers and candidate genes in autism spectrum disorder.

Translational psychiatry | 2013

Autism spectrum disorder (ASD) is a neurodevelopmental condition that results in behavioral, social and communication impairments. ASD has a substantial genetic component, with 88-95% trait concordance among monozygotic twins. Efforts to elucidate the causes of ASD have uncovered hundreds of susceptibility loci and candidate genes. However, owing to its polygenic nature and clinical heterogeneity, only a few of these markers represent clear targets for further analyses. In the present study, we used the linkage structure associated with published genetic markers of ASD to simultaneously improve candidate gene detection while providing a means of prioritizing markers of common genetic variation in ASD. We first mined the literature for linkage and association studies of single-nucleotide polymorphisms, copy-number variations and multi-allelic markers in Autism Genetic Resource Exchange (AGRE) families. From markers that reached genome-wide significance, we calculated male-specific genetic distances, in light of the observed strong male bias in ASD. Four of 67 autism-implicated regions, 3p26.1, 3p26.3, 3q25-27 and 5p15, were enriched with differentially expressed genes in blood and brain from individuals with ASD. Of 30 genes differentially expressed across multiple expression data sets, 21 were within 10 cM of an autism-implicated locus. Among them, CNTN4, CADPS2, SUMF1, SLC9A9, NTRK3 have been previously implicated in autism, whereas others have been implicated in neurological disorders comorbid with ASD. This work leverages the rich multimodal genomic information collected on AGRE families to present an efficient integrative strategy for prioritizing autism candidates and improving our understanding of the relationships among the vast collection of past genetic studies.

Pubmed ID: 23715297 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01 MH085143
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH090611
  • Agency: NIMH NIH HHS, United States
    Id: 1R01MH085143-01
  • Agency: NIMH NIH HHS, United States
    Id: 1R01MH090611-01A1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Human Gene Mutation Database (tool)

RRID:SCR_001888

Curated database of known (published) gene lesions responsible for human inherited disease.

View all literature mentions

GeneCards (tool)

RRID:SCR_002773

Database of human genes that provides concise genomic, proteomic, transcriptomic, genetic and functional information on all known and predicted human genes. Information featured in GeneCards includes orthologies, disease relationships, mutations and SNPs, gene expression, gene function, pathways, protein-protein interactions, related drugs and compounds and direct links to cutting edge research reagents and tools such as antibodies, recombinant proteins, clones, expression assays and RNAi reagents.

View all literature mentions

PubChem Substance (tool)

RRID:SCR_004742

As one of three primary databases of PubChem (Pcsubstance, Pccompound, and PCBioAssay), PubChem Substance Database contains descriptions of chemical samples, from a variety of sources, and links to PubMed citations, protein 3D structures, and biological screening results that are available in PubChem BioAssay. If the contents of a chemical sample are known, the description includes links to PubChem Compound. A PubChem FTP is available and new data is accepted into the repository. Pcsubstance contains more than 81 million records (2011).

View all literature mentions

Bioconductor (tool)

RRID:SCR_006442

Software repository for R packages related to analysis and comprehension of high throughput genomic data. Uses separate set of commands for installation of packages. Software project based on R programming language that provides tools for analysis and comprehension of high throughput genomic data.

View all literature mentions

Database of Genomic Variants (tool)

RRID:SCR_007000

Collection of curated structural variation in the human genome. Catalogue of human genomic structural variation identified in healthy control samples for studies aiming to correlate genomic variation with phenotypic data. It is continuously updated with new data from peer reviewed research studies. The Database is no longer accepting direct submission of data as they are currently part of a collaboration with two new archival CNV databases at EBI and NCBI, called DGVa and dbVAR, respectively. One of the changes to DGV as part of this collaborative effort is that they will no longer be accepting direct submissions, but rather obtain the datasets from DGVa (short for DGV archive). This will ensure that the three databases are synchronized, and will allow for an official accessioning of variants.

View all literature mentions

dbSNP (tool)

RRID:SCR_002338

Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.

View all literature mentions