Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

OST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation.

Journal of cell science | 2013

The eukaryotic oligosaccharyltransferase (OST) is a membrane-embedded protein complex that catalyses the N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER), a highly conserved biosynthetic process that enriches protein structure and function. All OSTs contain a homologue of the catalytic STT3 subunit, although in many cases this is assembled with several additional components that influence function. In S. cerevisiae, one such component is Ost4p, an extremely small membrane protein that appears to stabilise interactions between subunits of assembled OST complexes. OST4 has been identified as a putative human homologue, but to date neither its relationship to the OST complex, nor its role in protein N-glycosylation, have been directly addressed. Here, we establish that OST4 is assembled into native OST complexes containing either the catalytic STT3A or STT3B isoforms. Co-immunoprecipitation studies suggest that OST4 associates with both STT3 isoforms and with ribophorin I, an accessory subunit of mammalian OSTs. These presumptive interactions are perturbed by a single amino acid change in the transmembrane region of OST4. Using siRNA knockdowns and native gel analysis, we show that OST4 plays an important role in maintaining the stability of native OST complexes. Hence, upon OST4 depletion well-defined OST complexes are partially destabilised and a novel ribophorin I-containing subcomplex can be detected. Strikingly, cells depleted of either OST4 or STT3A show a remarkably similar defect in the N-glycosylation of endogenous prosaposin. We conclude that OST4 most likely promotes co-translational N-glycosylation by stabilising STT3A-containing OST isoforms.

Pubmed ID: 23606741 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 081671/B/06/Z
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/G000948/1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Clustal W2 (tool)

RRID:SCR_002909

THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 19, 2022. Command line version of multiple sequence alignment program Clustal for DNA or proteins. Alignment is progressive and considers sequence redundancy. No longer being maintained. Please consider using Clustal Omega instead which accepts nucleic acid or protein sequences in multiple sequence formats NBRF/PIR, EMBL/UniProt, Pearson (FASTA), GDE, ALN/ClustalW, GCG/MSF, RSF.

View all literature mentions

MP Biomedicals (tool)

RRID:SCR_013308

An Antibody supplier

View all literature mentions

GenScript (tool)

RRID:SCR_002891

Commercial organization which provides life science services and products to researchers. They specialize in gene synthesis, peptide, protein, antibody and preclinical drug development service.

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

Hep-G2 (tool)

RRID:CVCL_0027

Cell line Hep-G2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

COS-7 (tool)

RRID:CVCL_0224

Cell line COS-7 is a Transformed cell line with a species of origin Chlorocebus aethiops (Green monkey)

View all literature mentions