Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Growth cone dynamics in the zebrafish embryonic forebrain are regulated by Brother of Cdo.

Neuroscience letters | 2013

During development of the embryonic zebrafish brain, the differential expression of axon guidance molecules directs the growth of axons along defined neuronal tracts. Neurons within the dorsorostral cluster of the presumptive telencephalon project axons ventrally along the supraoptic tract. Brother of Cdo (Boc) is a known axon guidance molecule that is expressed in a broad band lying ventral to the dorsorostral cluster of neurons. Loss of Boc function has previously been shown to perturb the development of the supraoptic tract. We have used live cell imaging of individual growth cones within the living zebrafish embryo to determine how Boc regulates the growth cone dynamics and axon guidance within the supraoptic tract. A plasmid construct encoding elavl3-eGFP was injected into early embryos to selectively label a small number of neurons while the expression of Boc was knocked down by injection of antisense morpholino oligonucleotides. Time-lapse imaging of growth cones within the living embryos revealed that loss of Boc significantly affected the morphology of growth cones in comparison to axons within control embryos. Growth cones navigating along the supraoptic tract in the absence of Boc extended significantly longer filopodia in the rostrocaudal direction. These results indicate that Boc acts to restrict axons and their filopodia within the narrow pathway of the supraoptic tract. The highly selective nature of these pathfinding defects reveal that Boc is likely to be one of many molecules that coordinate the trajectory of axons within the supraoptic tract.

Pubmed ID: 23603263 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SPOT - Biological prioritization after a SNP association study (tool)

RRID:SCR_005193

A web-based tool for using biological databases to prioritize single nucleotide polymorphisms (SNPs) after a genome-wide association study (GWAS). The site allows users to upload a list of SNPs and GWAS P-values and returns a prioritized list of SNPs using the GIN method. Users can specify candidate genes or genomic regions with custom levels of prioritization. The results can be downloaded or viewed in the browser where users can interactively explore the details of each SNP, including graphical representations of the genomic information network (GIN) method. For investigators interested in incorporating biological databases into a post-GWAS SNP selection strategy, the SPOT web tool is an easily implemented and flexible solution.

View all literature mentions