Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development.

Epigenetics & chromatin | Apr 9, 2013

BACKGROUND: The histone variant H3.3 plays key roles in regulating chromatin states and transcription. However, the role of endogenous H3.3 in mammalian cells and during development has been less thoroughly investigated. To address this gap, we report the production and phenotypic analysis of mice and cells with targeted disruption of the H3.3-encoding gene, H3f3b. RESULTS: H3f3b knockout (KO) mice exhibit a semilethal phenotype traceable at least in part to defective cell division and chromosome segregation. H3f3b KO cells have widespread ectopic CENP-A protein localization suggesting one possible mechanism for defective chromosome segregation. KO cells have abnormal karyotypes and cell cycle profiles as well. The transcriptome and euchromatin-related epigenome were moderately affected by loss of H3f3b in mouse embryonic fibroblasts (MEFs) with ontology most notably pointing to changes in chromatin regulatory and histone coding genes. Reduced numbers of H3f3b KO mice survive to maturity and almost all survivors from both sexes are infertile. CONCLUSIONS: Taken together, our studies suggest that endogenous mammalian histone H3.3 has important roles in regulating chromatin and chromosome functions that in turn are important for cell division, genome integrity, and development.

Pubmed ID: 23570311 RIS Download

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, Id: P30 CA093373
  • Agency: NIGMS NIH HHS, Id: R01 GM100782

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ImageJ

A Java image processing program which can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and raw. It runs, either as an online applet or as a downloadable application, on any computer with a Java 1.4 or later virtual machine. Downloadable distributions are available for Windows, Mac OS, Mac OS X and Linux. It supports stacks, a series of images that share a single window. It is multithreaded, so time-consuming operations such as image file reading can be performed in parallel with other operations. It can calculate area and pixel value statistics of user-defined selections. It can measure distances and angles. It can create density histograms and line profile plots. It supports standard image processing functions such as contrast manipulation, sharpening, smoothing, edge detection and median filtering. It does geometric transformations such as scaling, rotation and flips. Image can be zoomed up to 32:1 and down to 1:32. All analysis and processing functions are available at any magnification factor. The program supports any number of windows (images) simultaneously, limited only by available memory. Spatial calibration is available to provide real world dimensional measurements in units such as millimeters. Density or gray scale calibration is also available. ImageJ was designed with an open architecture that provides extensibility via Java plugins. Custom acquisition, analysis and processing plugins can be developed using ImageJ built in editor and Java compiler. User-written plugins make it possible to solve almost any image processing or analysis problem.

tool

View all literature mentions

Bioconductor

A catalog of tools and software packages for the analysis and comprehension of high-throughput genomic data that uses the R statistical programming language. Bioconductor has a development version to which new features and packages are added prior to incorporation in the release. A large number of meta-data packages provide pathway, organism, microarray and other annotations. The broad goals of the Bioconductor project are: to provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data; to facilitate the inclusion of biological metadata in the analysis of genomic data; to provide a common software platform that enables the rapid development and deployment of extensible, scalable, and interoperable software; and to train researchers on computational and statistical methods for the analysis of genomic data.

tool

View all literature mentions

Illumina

An Instrument manufacture,

tool

View all literature mentions

PeakRanger

Software for a multi-purpose ChIP Seq peak caller.

tool

View all literature mentions

GenomeStudio

Visualize and analyze data generated by all of Illumina''s platforms.

tool

View all literature mentions