Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan.

Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics.

Pubmed ID: 23505383


  • Kwan EX
  • Foss EJ
  • Tsuchiyama S
  • Alvino GM
  • Kruglyak L
  • Kaeberlein M
  • Raghuraman MK
  • Brewer BJ
  • Kennedy BK
  • Bedalov A


PLoS genetics

Publication Data

March 18, 2013

Associated Grants

  • Agency: NIA NIH HHS, Id: AG013280-16
  • Agency: NIA NIH HHS, Id: AG025549
  • Agency: NCI NIH HHS, Id: CA 129132
  • Agency: NCI NIH HHS, Id: CA09229-30
  • Agency: NIGMS NIH HHS, Id: GM18926
  • Agency: NIA NIH HHS, Id: R01 AG039390
  • Agency: NIGMS NIH HHS, Id: R01 GM102308

Mesh Terms

  • Aging
  • Caloric Restriction
  • DNA Replication
  • DNA, Ribosomal
  • DNA-Binding Proteins
  • Gene Expression Regulation, Fungal
  • Longevity
  • Polymorphism, Genetic
  • Quantitative Trait Loci
  • Replication Origin
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Sirtuin 2