We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production.

The GABA shunt pathway involves three enzymes, glutamate decarboxylase (GAD), GABA aminotransferase (GAT) and succinate semialdehyde dehydrogenase (SSADH). These enzymes act in concert to convert glutamate (α-ketoglutarate) to succinate. Deletion mutations in each of these genes in Saccharomyces cerevisiae resulted in growth defects at 45°C. Double and triple mutation constructs were compared for thermotolerance with the wild-type and single mutant strains. Although wild-type and all mutant strains were highly susceptible to brief heat stress at 50°C, a non-lethal 30 min at 40°C temperature pretreatment induced tolerance of the wild-type and all of the mutants to 50°C. The mutant strains collectively exhibited similar susceptibility at 45°C to the induced 50°C treatments. Intracellular reactive oxygen intermediate (ROI) accumulation was measured in wild-type and each of the mutant strains. ROI accumulation in each of the mutants and in various stress conditions was correlated to heat susceptibility of the mutant strains. The addition of ROI scavenger N-tert-butyl-α-phenylnitrone (PBN) enhanced survival of the mutants and strongly inhibited the accumulation of ROI, but did not have significant effect on the wild-type. Measurement of intracellular GABA, glutamate and α-ketoglutarate during lethal heat exposure at 45°C showed higher levels of accumulation of GABA and α-ketoglutarate in the uga1 and uga2 mutants, while glutamate accumulated at higher level in the gad1 mutant. These results suggest that the GABA shunt pathway plays a crucial role in protecting yeast cells from heat damage by restricting ROI production involving the flux of carbon from α-ketoglutarate to succinate during heat stress.

Pubmed ID: 23447388 RIS Download

Mesh terms: 4-Aminobutyrate Transaminase | Glutamate Decarboxylase | Hot Temperature | Ketoglutaric Acids | Mutation | Reactive Oxygen Species | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Succinate-Semialdehyde Dehydrogenase (NADP+) | Succinic Acid | gamma-Aminobutyric Acid

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.