Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination.

Cancer research | Apr 1, 2013

http://www.ncbi.nlm.nih.gov/pubmed/23382044

Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2, and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an "ETGE" motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1-interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA overexpression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 overexpression in the presence of these mutants further promotes NRF2 activation. Collectively, our findings further support the competition model of NRF2 activation and suggest that "ETGE"-containing proteins such as DPP3 contribute to NRF2 activity in cancer.

Pubmed ID: 23382044 RIS Download

Mesh terms: Adaptor Proteins, Signal Transducing | Animals | Apoptosis | Blotting, Western | Carcinoma, Squamous Cell | Cell Proliferation | Cells, Cultured | Cohort Studies | Cytoskeletal Proteins | Dipeptidyl-Peptidases and Tripeptidyl-Peptidases | Embryo, Mammalian | Fibroblasts | Humans | Immunoenzyme Techniques | Kidney | Luciferases | Lung | Lung Neoplasms | Mice | Mice, Knockout | Mutagenesis, Site-Directed | Mutation | NF-E2-Related Factor 2 | Proteomics | RNA, Messenger | Real-Time Polymerase Chain Reaction | Reverse Transcriptase Polymerase Chain Reaction | Ubiquitin | Ubiquitination

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIH HHS, Id: 1-DP2-OD007149-01
  • Agency: NIH HHS, Id: DP2 OD007149
  • Agency: NCI NIH HHS, Id: P30 CA016086
  • Agency: NCI NIH HHS, Id: U24 CA143848
  • Agency: NCI NIH HHS, Id: U24 CA143848-02S1

BioGRID (Data, Interactions)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.