Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses.

The role of amyloid beta (Aβ) in brain function and in the pathogenesis of Alzheimer's disease (AD) remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz). Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during AD.

Pubmed ID: 23355821 RIS Download

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

None

IonChannelGenealogy (Data, Computational model)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NEURON

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

tool

View all literature mentions