Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors.

The EMBO journal | 2013

The Ndc80 complex is the key microtubule-binding element of the kinetochore. In contrast to the well-characterized interaction of Ndc80-Nuf2 heads with microtubules, little is known about how the Spc24-25 heterodimer connects to centromeric chromatin. Here, we present molecular details of Spc24-25 in complex with the histone-fold protein Cnn1/CENP-T illustrating how this connection ultimately links microtubules to chromosomes. The conserved Ndc80 receptor motif of Cnn1 is bound as an α helix in a hydrophobic cleft at the interface between Spc24 and Spc25. Point mutations that disrupt the Ndc80-Cnn1 interaction also abrogate binding to the Mtw1 complex and are lethal in yeast. We identify a Cnn1-related motif in the Dsn1 subunit of the Mtw1 complex, necessary for Ndc80 binding and essential for yeast growth. Replacing this region with the Cnn1 peptide restores viability demonstrating functionality of the Ndc80-binding module in different molecular contexts. Finally, phosphorylation of the Cnn1 N-terminus coordinates the binding of the two competing Ndc80 interaction partners. Together, our data provide structural insights into the modular binding mechanism of the Ndc80 complex to its centromere recruiters.

Pubmed ID: 23334295 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions

Hmmer (tool)

RRID:SCR_005305

Tool for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.

View all literature mentions

Jalview (tool)

RRID:SCR_006459

A free program for multiple sequence alignment editing, visualisation and analysis that is available in two forms: a lightweight Java applet for use in web applications, and a powerful desktop application that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server. Use it to view and edit sequence alignments, analyse them with phylogenetic trees and principal components analysis (PCA) plots and explore molecular structures and annotation. Jalview has built in DNA, RNA and protein sequence and structure visualisation and analysis capabilities. It uses Jmol to view 3D structures, and VARNA to display RNA secondary structure.

View all literature mentions

CCP4 (tool)

RRID:SCR_007255

Portal for Macromolecular X-Ray Crystallography to produce and support an integrated suite of programs that allows researchers to determine macromolecular structures by X-ray crystallography, and other biophysical techniques. Used in the education and training of scientists in experimental structural biology for determination and analysis of protein structure.

View all literature mentions

BUSTER (tool)

RRID:SCR_015653

Software for structure refinement.

View all literature mentions