Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons.

The Journal of comparative neurology | 2013

The perirhinal cortex plays a critical role in recognition and associative memory. However, the network properties that support perirhinal contributions to memory are unclear. To shed light on this question, we compared the synaptic articulation of short- and long-range inputs from the perirhinal cortex or temporal neocortex with perirhinal neurons in rats. Iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) were performed at different rostrocaudal levels of the ventral temporal neocortex or perirhinal cortex, and electron microscopic observations of anterogradely labeled (PHAL(+)) axon terminals found at perirhinal sites adjacent to or rostrocaudally distant from the injection sites were performed. After neocortical injections, the density of PHAL(+) axons in the perirhinal cortex decreased steeply with rostrocaudal distance from the injection sites, much more so than following perirhinal injections. Otherwise, similar results were obtained with neocortical and perirhinal injections. In both cases, most (76-86%) PHAL(+) axon terminals formed asymmetric synapses, typically with spines (type A, 83-89%) and less frequently with dendritic profiles (type B, 11-17%). The remaining terminals formed symmetric synapses with dendritic profiles (type C, 14-23%). Type B and C synapses were 2.4-2.6 times more frequent in short- than long-range connections. The postsynaptic elements in type A-C synapses were identified with immunocytochemistry for CAMKIIα, a marker of glutamatergic cortical neurons. Type A and C terminals contacted CAMKIIα-positive principal cells, whereas type B synapses contacted presumed inhibitory neurons. Overall, these results suggest that principal perirhinal neurons are subjected to significantly more inhibition from short- than from long-range cortical inputs, an organization that likely impacts perirhinal contributions to memory.

Pubmed ID: 23296922 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

Associated grants

  • Agency: NCRR NIH HHS, United States
    Id: P51 RR000165
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH073610
  • Agency: NCRR NIH HHS, United States
    Id: RR-00165
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH-073610

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Adobe Illustrator (tool)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

CaMKII antibody [6G9] (antibody)

RRID:AB_447192

This monoclonal targets CaMKII

View all literature mentions