Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis.

The Journal of comparative neurology | 2013

Nonmammalian vertebrates have a remarkable capacity to regenerate brain tissue in response to central nervous system (CNS) injury. Nevertheless, it is not clear whether animals recover lost function after injury or whether injury-induced cell proliferation mediates recovery. We address these questions using the visual system and visually-guided behavior in Xenopus laevis tadpoles. We established a reproducible means to produce a unilateral focal injury to optic tectal neurons without damaging retinotectal axons. We then assayed a tectally-mediated visual avoidance behavior to evaluate behavioral impairment and recovery. Focal ablation of part of the optic tectum prevents the visual avoidance response to moving stimuli. Animals recover the behavior over the week following injury. Injury induces a burst of proliferation of tectal progenitor cells based on phospho-histone H3 immunolabeling and experiments showing that Musashi-immunoreactive tectal progenitors incorporate the thymidine analog chlorodeoxyuridine after injury. Pulse chase experiments indicate that the newly-generated cells differentiate into N-β-tubulin-immunoreactive neurons. Furthermore, in vivo time-lapse imaging shows that Sox2-expressing neural progenitors divide in response to injury and generate neurons with elaborate dendritic arbors. These experiments indicate that new neurons are generated in response to injury. To test if neurogenesis is necessary for recovery from injury, we blocked cell proliferation in vivo and found that recovery of the visual avoidance behavior is inhibited by drugs that block cell proliferation. Moreover, behavioral recovery is facilitated by changes in visual experience that increase tectal progenitor cell proliferation. Our data indicate that neurogenesis in the optic tectum is critical for recovery of visually-guided behavior after injury.

Pubmed ID: 23238877 RIS Download

Associated grants

  • Agency: NEI NIH HHS, United States
    Id: R01 EY011261
  • Agency: NEI NIH HHS, United States
    Id: EY011261

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Volocity 3D Image Analysis Software (tool)

RRID:SCR_002668

3D image analysis software to visualize, analyze and validate 3D fluorescence images from a wide range of confocal microscopy, widefield and high content screening systems. It is fully integrated for a seamless user experience.

View all literature mentions

Adobe Illustrator (tool)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

BrdU (antibody)

RRID:AB_10015219

This unknown targets BrdU

View all literature mentions

Musashi 1 / Msi1 antibody (antibody)

RRID:AB_2144988

This polyclonal targets Musashi 1 / Msi1

View all literature mentions

Anti-phospho-Histone H3 (Ser10) Antibody (antibody)

RRID:AB_310177

This unknown targets phospho-Histone H3 (Ser10)

View all literature mentions